

THE MACHINE LANGUAGE BOOK

FOR THE COMMODORE 64

By: Lothar Englisch

Abacus Si Software
P.O. BOX 7211 GRAND RAPIDS, MICH. 49510

Second Printing, October 1984

Printed in U.S.A.

Copyright (O1983

Copyright (O1984

Translated by Greg Dykema

Data Becker GmbH

Merowingerstr. 30

4000 Dusseldorf W. Germany

Abacus Software

P.O. Box 7211

Grand Rapids, MI 49510

This book is copyrighted. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical,

photycopying, recording, or otherwise, without the prior

permission of Data Becker, GmbH or ABACUS Software, Inc.

ISBN 0-916439-02-X

PREFACE

Programming in machine and assembly language is one of those

things that everyone would like to be able to do. Machine

language is extremely fast and versatile. Many people try to

learn itf but most quickly give it up because it is too

complicated. Only a few actually use it.

With this book we want to make it possible for thousands of

Commodore 64 users to use machine language. We have enlisted

the services of Lothar Englisch as author for this purpose.

Not only has he worked on many of our other books, but he is

also well acquainted with the Commodore operating systems

and programming for all models of the Commodore computers in

both machine language and assembler.

To get the most out of machine language programming, you

must concentrate on the following chapters. We think that

you will be rewarded in the end.

Have fun with this book and much success with your own

machine language programs.

Table of Contents

1. Introduction 1

2. The 6510 Microprocessor ..8

3. Instructions and Addressing Modes of the 6510 17

A. The Load instructions 18

B. The Store instructions. ••• 30

C. The Transfer instructions 32

D. The Arithmetic instructions 35

E. The Logical instructions 42

F. The Compare instructions 49

G. The Conditional branching instructions 54

H. The Jump instructions 60

I. The Increment and Decrement instructions 62

J. The Flag manipulation instructions 66

K. The Shift instructions 68

L. The Subroutine instructions 73

M. The Stack instructions 77

N. The Interrupt handling instructions 79

4. Entering Machine Language Programs 81

5. The Assembler 87

6. A Single-Step Simulator for the 6510 115

7. Machine Language Programs on the Commodore 64 139

8. Extending BASIC 173

9. Input and Output Routines 184

10 • BASIC Loader Programs 192

11. 6510 Disassembler 194

12. Using a Machine Language Monitor 200

Appendix A. Addressing Modes and Operation codes 208

Appendix B. Groups of Instructions 209

Appendix C. Conversion Tables Decimal - Hex - Binary...210

Appendix D. Table of 6510 Instruction Codes.% 213

Appendix E. Operation codes and Flag Settings 214

Appendix F. Ordering Instructions

for Optional Program Diskette...216

The Machine Language Book of the Commodore 64

1. INTRODUCTION

Why use machine language? — Advantages and disadvantages of

programming in machine language

Today, when you purchase a home or personal computer such as

the Commodore 64, you have the BASIC programming language

available as soon as you turn your computer on. With BASIC

you can perform almost all of the tasks needed in home

computing. It is easy to learn to program in BASIC. Why

thenr should you bother with machine language? Isn't it just

a relic from the Dark Ages of computing?

Let's compare BASIC to machine language.

Most of us have mastered BASIC and know that it's not very

difficult to learn. In this book we'll try to convince you

that programming in machine language is almost as easy to

learn. If you already know BASIC, then you have a headstart.

The fundamentals of programming in machine language are not

much different.

What advantages over BASIC justify that you learn a new

programming language?

Your Commodore 64 comes with the BASIC programming language

built-in. BASIC is an acronym for beginner's All Purpose

The Machine Language Book of the Commodore 64

Symbolic instruction £ode and despite its ease of mastery,

it is quite capable of performing most home computing tasks.

BASIC is a high level programming languages like FORTRAN,

Pascal, and COBOL, These languages are often called problem-

oriented languages because they are intended to be used for

solving problems in various fields such as mathematics,

science or business. The counterpart of problem-oriented

languages are the machine-oriented languages such as FORTH,

and require a more detailed knowledge of the computer

hardware. Machine language is the extreme member of this

category of languages.

By itself, the Commodore 64 cannot understand BASIC at all.

How can it execute the BASIC commands that you type in at

the keyboard if it doesn't speak BASIC? The Commodore 64

contains an "operating system" which includes a BASIC

interpreter. This interpreter converses with you in BASIC.

The Commodore 64 converts the BASIC commands and statements

into a series of executable machine language instructions.

You don't even see this happening. It takes place

"automatically".

Let's take a look at a simple example of how the BASIC

interpreter works:

PRINT "HELLO"

The Machine Language Book of the Commodore 64

When you enter this statement and press <RETURN>f the

interpreter reads the line character by character.

One of the jobs of the interpreter is to recognize the

commands (also called keywords) that make up the BASIC

language. When it finds the first word in the line (PRINT),

the interpreter looks in its command table to determine if

the word is a BASIC keyword. The command table contains all

of the BASIC keywords: GOTOr FOR, INPUT, PRINT, etc.

Associated with each BASIC keyword is the location of the

routine in the Commodore 64 operating system which performs

the actions required by that BASIC keyword. Below is a

simplified example of the command table:

BASIC MEMORY LOCATION WHICH

KEYWORD PERFORMS REQUIRED ACTIONS

GOTO 43168

IF 43304

INPUT 43967

PRINT 43680

• •

If the interpreter finds the keyword in the command table,

it knows what part of the operating system is to carry out

that BASIC command. In our example, the interpreter searches

the command table for the word PRINT. It finds the keyword

and notes that the memory location which performs the PRINT

statement begins at location 43680. Therefore, the

interpreter lets the "program" segment (usually called a

routine or machine-language routine) located at 43680

perform the PRINT command.

The Machine Language Book of the Commodore 64

The routine at 43680 continues to read more of that same

line - also character by character. Next it finds a

quotation mark which tells PRINT routine that text follows.

According the the rules of BASIC, the Commodore 64 echos

onto the screen each of the next characters up to the ending

quotation mark. So the word HELLO appears on the screen. If

no additional characters appear on the line following the

ending quotation mark, the routine knows that its job is

complete and responds with READY. The BASIC interpreter is

now ready for another command.

This may appear very complicated and you may be telling

yourself that there must be an easier way. But this is

exactly the purpose of the BASIC interpreter — to insulate

you from the drudgery and hard work of machine language. Why

then learn machine language?

Machine language is considerably faster than BASIC.

What speed advantages does machine language have over BASIC

and what accounts for this advantage? In order for your

computer understand BASIC, is has a BASIC interpreter which

recognizes and executes individual BASIC commands. The

interpreter itself is written in machine language.

To perform a simple BASIC command, the interpreter must do

several things. A simple BASIC statement is POKE 1024,10.

The Machine Language Book of the Commodore 64

The interpreter searches for the first word in the

statement; it finds the keyword POKE in its command table;

it knows to expect two arguments; it finds the first

argument 1024 and converts it to binary (remember that the

computer works in binary); it finds the second argument 10

and converts it to binary; it writes this second value into

the location specified by the first argument. This statement

takes about two milliseconds or 2 thousandths of a second to

perform.

How can you do the same task in machine language? You can

peform the same thing with two instructions:

LDA #10

STA 1024

These two instructions take six microseconds or 6 millionths

of a second. This is less than l/300th the time as BASIC.

A machine language program is from 10 to 1000 times faster

than an equivalent program written in BASIC.

Some tasks such as sorting or calculating mathematical

formula are very time-consuming. If there are large amount

of data, these tasks may easily take hours to complete using

the BASIC language. Substituting a fast machine language

program would be welcome in such a situation.

The Machine Language Book of the Commodore 64

Some tasks cannot be performed using BASIC. An example is

attending to the "interrupts" that temporarily require the

Commodore 64 to stop what it's doing to see if the RUN/STOP

key is pressed. Servicing interrupts must be done by a

machine language routine.

This means that you cannot utilize the full capabilities of

the Commodore 64 without machine language. This is

especially true for high resolution graphics and the music

synthesizer on the Commodore 64,

Another important point about machine language programming

is its use of memory. A well-written machine language

program may be ten times smaller than an equivalent BASIC

program. A IK program written in BASIC is not very large;

but a IK program written in machine language is large.

The same holds true for data storage. You can create and

maintain compact data structures in machine language that

are not possible in BASIC. For example, BASIC requires two

bytes to represent integer values between 0 and 255. In

machine language, you can represent integer values between 0

and 255 in one byte for each variable. Thus one-half of the

storage space for such values is wasted using BASIC. Machine

language lets you choose the most optimal data structure for

each problem.

To be fair, there are disadvantages to using machine

The Machine Language Book of the Commodore 64

language. First, you must learn how to program in machine

language. If you have already mastered BASIC, then you have

the fundamentals under your belt. But you also need some

tools that let you easily write and work with machine

language programs. This book contains the listings for

several such tools.

Another disadvantage of machine language is that these pro

grams can run only on the model computers for which they are

written, and require substantial changes to run on a

different model. Most BASIC programs are more easily

transportable to other computers.

Testing machine language programs is another difficulty

unless you have the appropriate tools. We have included the

listing for a 6510 simulator program that not only teaches

you the machine language instructions but helps you find

errors in your programs.

Although machine language programming has some drawbacks,

many tasks cannot be solved without machine language and

many others require you to get the last bit of performance

from your computer.

After you have written your first machine language program,

you'll see that it isn't so difficult. We hope that you find

the lessons of this book helpful and that they inspire you

to solve your own computing problems in machine language.

The Machine Language Book of the Commodore 64

2. The 6510 Microprocessor

Before you begin programming in machine language, you need

to become acquainted with the processor itself. Let's

clarify some terms first. We'll begin with the construction

of the processor.

The 6510 microprocessor belongs to the family of 65>X

processors that are found in most Commodore computers. The

6510 processor contains a set of registers which are used by

all operations.

How can we describe the registers?

A microprocessor works digitally. It can only distinguish

between two conditions. We can think of these two conditions

like a switch which can be either on and off (or 1 and 0).

A single switch can have only two states. By itself a switch

is not very useful, so multiple switches are combined into

registers.

A single switch in the processor is called a bit (from

b_inary digij:). A group of eight bits is called a byte. The

registers of the 6510 processor contains a%group of eight

bits (or one byte) is arranged like this:

bit number 76543210 (power of 2)

contents 01101001

FIG 2.1

The Machine Language Book of the Commodore 64

The upper row illustrates the bit numbering convention that

is commonly used throughout this book. The bits are numbered

from zero to seven. Beneath each bit number are the contents

of the bits; either a 0 or a 1. While a bit can represent

two conditions (and therefore only two values), you can

represent a larger range with 8 bits.

Here's the numbering system that you are most familiar with

- the decimal system.

decimal position 3 2 10 (power of 10)

contents 5 7 2 4

FIG 2.2

These positions are also numbered, this time from zero to

three.

How do you calculate the value of this number?

Each digit has a value between zero and nine and the next

position has a value ten times greater. Starting from the

rightmost decimal position:

4*10° +

4 +

4 +

4 +

2*10*

2*10

2*10

20

+ 7*102 H

+ 7*10*10 H

+ 7*100 H

+ 700 H

= 5724

h 5*103

\- 5*10*10*10

h 5*1000

i- 5000

The Machine Language Book of the Commodore 64

Likewise, you can determine the contents of the registers

using the binary number system. They are called binary

numbers because each position allows two values instead of

ten. Accordingly, the next highest position is not ten times

greater, but only twice the previous value. So you can

calculate the contents of the register:

1*2° 0*21 0*2 1*2 0*24 1*25 + 1*26 0*27

= 1*1 + 0*2 + 0*4 + 1*8 + 0*16 + 1*32 + 1*64 + 0*128

1 + 0 +0 +8 +0 +32 + 64+ 0

= 105

Thus the contents of the register in FIG 2.1 is 105. These

troublesome calculations can be simplified, if you first

calculate the value of each bit position. This is analagous

to memorizing the decimal positions.

A 1 in

this

bit

position

0

1

2

3

4

5

6

7

Is equivalent

to this

decimal value

2°

21

22

23

24

25

26

27

= 1

= 2

= 4

= 8

= 16

= 32

= 64

= 128

10

The Machine Language Book of the Commodore 64

What is the maximum value of the register? If all of the bit

positions of the register have the value one, their sum

yields 1+2+4+8+16+32+64+ 128 = 255. The

greatest value that can be represented in eight bits is 255.

So a total of 256 (0 thru 255) different values can be

represented in a register.

But binary numbers are tedious to manipulate. For this

reason, an alternative representation is introduced. It

requires fewer digits and is therefore more convenient to

use. If you divide an 8-bit binary number into two 4-bit

binary numbers, each 4-bit number can represent 16 different

values. If you construct a number system with 16 different

digits, then you can express each 8-bit binary number with

just two digits.

bit position 7654 3210

binary contents 0110 1001

hexadecimal contents 6 9*

FIG 2.3

The hexadecimal (base 16) numbering system uses 16 different

digits for this purpose. Each byte is divided into two half-

bytes, called nybbles. A nybble can have values from 0 to

15, but the decimal number system only has digits from 0 to

9. In the hexadecimal number system, the digits from 10 thru

15 are represented by the letters A thru F. The hexadecimal

digits are arranged like this:

11

The Machine Language Book of the Commodore 64

This

Binary

Nybble

6000
0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Is equivalent

to this

Hex digit

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

And has

this decimal

value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

For the example in FIG 2.3, the contents of the register

have a hexadecimal value 69. In order to distinguish between

the various number systems, you denote a hexadecimal number

with a preceding dollar sign $, and a binary number with a

preceding percent sign %.

Appendix C is a Decimal, Hexadecimal, Binary conversion

table. The remainder of this book uses hexadecimal numbers

most often, since it is easily representable and

convertable into the binary representation of the processor.

Now let's take a look at the microprocessor registers.

The 6510 has a total of six registers, five are eight-bit

registers and the sixth is a sixteen-bit register. Let's

12

The Machine Language Book of the Commodore 64

examine the registers individually.

The accumulator is the most important register in the

microprocessor. It is the universal working register, used

for almost all operations. All arithmetic and logical

operations, and almost all of the comparison instructions

use the accumulator.

The X-register is the second register in the processor. This

register is used together with the accumulator when working

with tables. It functions as the counter or pointer to the

individual table elements. For this reason this register is

also called an index register.

The Y-register is an index register like the X-register and

serves similar purposes.

The program counter is a 16-bit register. Its contents

indicate the memory location from which the next instruction

is to be executed. This register is managed by the

microprocessor itself. Normally, you do not have direct

control over the contents of this register.

The stack pointer points to an area of memory called the

stack which is used for subroutines and for short-term data

storage. The stack is described in detail later.

The processor status register gives information about the

13

The Machine Language Book of the Commodore 64

result of the last executed instruction. This register is

the foundation for the decision making and conditional

branching instructions. Seven of the eight bits of the

status register are used as flags. You can examine and

conditionally branch depending on the setting of a

particular flag. A flag can be either set (=1) or clear

(=0). The processor status register is made of the following

flags:

bit position 76543210

flag type NV-BDIZC

The letters are abbreviations for the names of the flags,

and have the following meanings:

C - Carry The carry flag contains the carry generated

by an addition, and is set if the result is greater

than 255 and therefore cannot be contained in eight

bits of the accumulator.

Z - Zero The zero flag is set if the result of an

operation is zero.

I - Interrupt Disable This flag determines if

interrupts are permitted in a program. This flag

does not interest us at the moment.

14

The Machine Language Book of the Commodore 64

D - Decimal The decimal flag determines if arithmetic

is carried out in the decimal mode.

B - Break The break flag indicates if execution was

halted by a BRK instruction.

V - overflow The V flag indicates overflow when

calculating with signed numbers.

N - Negative This flag is set if the result of an

operation results in a value greater than 127 (bit

7 is set). The designation negative comes from the

fact that values over $7F can be interpreted as

negative numbers.

A microprocessor must have a place to get data and store

data. The computer's memory serves this purpose. Memory is

divided into individual cells containing 8 bits each, the

same size as the accumulator and X and Y registers. In order

to access the memory, it must be possible to select a

specific memory location. This selection is called

addressing memory. We give each memory location a number or

address. With 8 bits, the microprocessor can address cells

from 0 to 255 for a total of 256 memory cells. This is far

too few for most applications. For this reason, the micro

processor uses 16-bits for the address. With 16 bits, the

microprocessor can address 216 = 65536 memory locations.

15

The Machine Language Book of the Commodore 64

This is called a 16-bit address bus. To summarize - a) the

6510 microprocessor can address 65536 memory locations; b)

each memory location can contain a value from 0 to 255. For

ease of handling, 210 = 1024 bytes is called a kilobyte or

IK. Therefore, the processor can address 64*1024 = 65536 or

64K. This is the entire address range of the Commodore 64.

Now you can understand the significance of the program

counter. The program counter contains a 16-bit value. This

16-bit value is the address of the next instruction that the

microprocessor is to fetch from memory and execute.

An instruction for the microprocessor can be represented by

a value between 0 and 255. The 6510 microprocessor can have

a maximum of 256 different instructions. However, not all

the codes have a meaning on the 6510; fewer than 256

instructions exist. BASIC commands are naturally not

included.

16

The Machine Language Book of the Commodore 64

3. Instructions and Addressing Modes of the 6510

Of the 256 possible 8-bit codes, 151 are legal instructions

for the 6510, These include several similar instructions,

that are different only by addressing mode. There are only

56 entirely different instructions on the 6510. These

instructions are easy to learn. They are introduced to you

in groups.

An instruction is represented in the computer as an 8-bit

binary number. Each particular machine language instruction

has a specific binary value. The microprocessor knows what

actions to take based on this binary value.

Machine language instructions are given mnemonic-names. A

mnemonic is a three character abbreviation for a machine

language operation. For example, the mnemonic LDA stands for

I.oaD Accumulator. These mnemonics will become more familiar

to you as we discuss them throughout the book.

Now let's take a look at the specific instructions:

17

The Machine Language Book of the Commodore 64

A. The LOAD instructions

The LOAD instructions get data from memory and place it

into a register. There are three working registers in the

processor (the accumulator, the X-register and the Y-

register). Each has a corresponding load instructions.

LDA LoaD Accumulator

LDX LoaD X register

LDY LoaD Y register

The 6510 processor has different addressing modes. An

addressing mode tells the 6510 how to calculate the

address (or location) of the operand.

In the examples that follow, we show you corresponding

"pseudo-BASIC" statements to illustrate the machine

langauge instructions in a familiar notation.

1) Immediate Addressing

LDA #10

This addressing mode is indicated by the pound sign

preceding the value to be loaded. Immediate

addressing means that the accumulator is loaded

with the value which follows it, in this case 10.

The corresponding pseudo-BASIC instruction is:

A=10

18

The Machine Language Book of the Commodore 64

This addressing mode is used to load a register

with a constant. It also works with the X and Y

registers:

LDX #$7F or LDY #0

Here the X-register is loaded with the value $7F

(127 in decimal) and the Y-register with the value

zero (0).

When using the immediate addressing mode, the value

to be loaded is part of the program. The

instruction and the value are placed one after the

other in two adjacent memory locations. For

example, if the machine language program is located

at address 1200, the program counter contains the

value 1200. The 6510 microprocessor gets the

intruction at 1200 and sees that its value is $A9

or decimal 169. It knows that the instruction is

LDA #. So it places the contents contained in the

next memory location 1201 into the accumulator (see

diagram which follows). Since this instruction

consists of two bytes - the instruction itself and

the value to be loaded - the processor

automatically increments the program counter by

two. The program counter then points to the next

instruction to be executed by the microprocessor

19

The Machine Language Book of the Commodore 64

starting at 1202,

contents—> ! A9 Idata I

I ! 1

address > 1200 1201 1202

2) Absolute Addressing

This addressing mode is used if a register is be

loaded with the contents of a particular memory

location. This is different from the immediate

addressing mode which loads the register with a

constant value.

LDA $C0AF

Here the accumulator is loaded with the contents of

memory location $C0AF. How is this instruction

represented in memory? The address $C0AF is a 16-

bit number. A memory location can only hold 8 bits.

The solution is to divide the 16-bit address into

two 8-bit numbers. The following convention is used

for this - immediately following the instruction is

the least significant part of the address (low-

byte) and followed by the the most significant part

(high-byte).

! ! i i

contents—> ! AD ! AF ! CO !

1 i ! !

address > 1200 1201 1202 1203

20

The Machine Language Book of the Commodore 64

In this example, the instruction code is $AD (173).

The absolute address follows: with the low-byte

first, $AF (175) and finally the high-byte $C0

(192). After the instruction is executed, the

program counter is incremented by three. The

corresponding instruction in pseudo-BASIC is:

A = PEEK($C0AF)

This instruction also works with the X and Y

registers. The instruction or operation codes,

abbreviated to op codes, can be found in Appendix

A.

When executing absolute addressing mode instruc

tions, the processor gets the low-byte and then the

high-byte of the address. The data found at that

address is placed into the accumulator, the program

counter is incremented by three and the next

instruction is fetched. These instructions require

three bytes, in contrast to the immediate

addressing mode which requires only two.

Now a quick look at the status register. Load

instructions affect the zero and negative flags. If

the value loaded has a value of zero, then the zero

flag is set; otherwise it is cleared. If the value

21

The Machine Language Book of the Commodore 64

loaded is negative (greater than $7F or 127

decimal), then the negative flag is set; otherwise

it is cleared.

3) Zero-page addressing

Another addressing mode is called the zero-page

addressing mode. This addressing mode can be used

if the address of the data is in memory locations

between 0 and $FF (255). This results in a two-byte

instruction in contrast to the three-byte instruc

tion of the absolute addressing mode. Zero-page

addressing instructions occupy less memory and

execute faster. A disadvantage, of course, is that

the data must be located in addresses from 0 to

255.

Where did the term zero-page originate? You can

think of the 64K of memory as being divided into

256 pages, each containing 256 bytes. Thus memory

locations 0 thru 255 form page zero.

A zero-page load instruction looks like this:

LDA $73

22

The Machine Language Book of the Commodore 64

i 1 I

contents—> ! A5 ! 73 !

i ! 1

address > 1200 1201 1202

It is stored as a two-byte instruction: $A5 (165)

$73 (115). In pseudo-BASIC, this is:

A = PEEK($73)

4) Indexed Addressing

Another addressing mode is the indexed addressing

mode. Here the X and Y registers play important

roles.

LDA $25B8,X

This is called absolute addressing indexed by X.

How does it work? The processor loads the

accumulator not with the contents of memory

location $25B8. Rather it first adds the value of

the X-register to the absolute address ($25B8). If

the X-register contains $35, for example, the

following calculation takes place:

$25B8 + $35 = $25ED

23

The Machine Language Book of the Commodore 64

The accumulator is loaded with the contents of

location $25ED. If this instruction is executed

with varying X-valuesf a different value is loaded

each time. This addressing mode is very useful for

programming loops and when working with tables.

Other examples are described later. In pseudo-

BASIC, this addressing mode can be formulated as

follows:

A = PEEK($25B8 + X)

Here X implies the contents of the X register.

i i i !

contents—> ! BD i B8 i 25 i

III!

address > 1200 1201 1202 1203

You can also use the Y-register in place of the X-

register for indexed addressing.

LDA $25B8,Y

Here the contents of the Y-register is added to the

absolute address $25B8 to obtain the final address.

Using both registers, you have two independent

index variables which can be used for programming

nested loops.

24

The Machine Language Book of the Commodore 64

5) Zero-page indexed addressing

Indexed addressing can also be used together with

zero-page addressing, thereby carrying over the

advantages of zero-page addressing to indexed

addressing. Note that this addressing mode works

with the X-register only. A typical instruction

might look like this:

LDA $BAfX

This results in a two-byte instruction.

i ! i

contents—> ! B5 ! BA !

! ! 1

address > 1200 1201 1202

6) Indirect Indexed Addressing

This addressing mode is not as easy to understand,

but permits very flexible programming -the indirect

indexed addressing mode. Using this addressing

mode, zero page plays an important role. With

indirect indexed addressing, two consecutive memory

locations in zero-page form a pointer to the actual

address. The first memory cell contains the low-

byte and the next contains the high-byte of the

25

The Machine Language Book of the Commodore 64

actual address. An example clarifies this.

Imagine that zero-page address $70 contains the

value $20, and address $71 contains the value $C8.

These two memory locations form a pointer to the

address $C820. Next the Y-register also comes into

play in the indexing. If the Y-register contains

$B3 for example, it is added to $C820 to get an

effective address of $C8D3 as shown below:

LDA ($70),Y ($70) => $20 contents of $70

($71) => $C8 contents of $71

$C820 yields this address

(Y) => $B3 contents of Y reg.

$C8D3 sum of addr and Y reg.

($C8D3) => $4F contents at $C8D3

After the instruction is executed, the the accumu

lator contains $4F.

! ! i

contents—> ! Bl ! 70 !

address > 1200 1201 1202

In pseudo-BASIC it looks like:

A = PEEK (PEEK($70) + 256 * PEEK($71) + Y)

26

The Machine Language Book of the Commodore 64

Indirect indexed addressing is indicated by placing

the operand in parentheses. This addressing mode is

very efficient, because you can access the entire

memory with a two-byte instruction. This mode is

used for managing tables and loops. It is more

flexible than the simple indexed addressing,

because the entire memory range can be addressed,

not just the memory in a single page. Only the

contents of the two-byte pointer in the zero page

need be changed.

7) Indexed Indirect Addressing

Another addressing mode is the indexed indirect

address mode, in contrast to the above indirect

indexed addressing mode. It works with the X-

register instead of the Y-register. Here also the

address is formed from two consecutive zero-page

locations. When calculating the address, the index

is first added to the pointer and then the contents

are used as a pointer to the actual address. An

example:

LDA ($70

= >

rX) (X)

$70

($78)

($79)

($2040)

=>

= >

=>

= >

=>

$08

$78

$40

$20

$2040

$A9

contents

added to

contents

contents

of X register

zero-page addr

of

of

yields this

contents at

$78

$20

address

$2040

27

The Machine Language Book of the Commodore 64

The accumulator contains $A9 after the instruction

is executed.

i !

contents—> I Al ! 08

! 1

address > 1200 1201 1202

In pseudo-BASIC it looks like this:

A = PEEK (PEEK($70 + X) + 256*PEEK($70 + X + 1))

First the contents of the X-register is added to

the operand and the contents of the resulting

address is used a pointer to the actual address.

The indexed indirect address mode is seldom used in

contrast to the indirect indexed mode. You will

probably have little occasion to use this mode at

the beginning.

Here is a summary of the addressing modes and

operation codes:

Address mode LDA LDX LDY

immediate $A9 $A2 $A0 operation codes
absolute $AD $AE $AC

zero page $A5 $A6 $A4

absolute X-indexed $BD - $BC

absolute Y-indexed $B9 $BE

zero-page X-indexed $B5 - $B4

zero-page Y-indexed - $B6

indirect indexed $B1

indexed indirect $A1

28

The Machine Language Book of the Commodore 64

the relative addressing mode and the accumulator

addressing mode are discussed later.

29

The Machine Language Book of the Commodore 64

B. The STORE Instructions

The counterparts of the load instructions are the store

instructions. Using these instructions we can place the

contents of a register into memory. The mnemonics for the

instructions are:

STA

STX

STY

The contents of the accumulator, X-register or Y-register

are placed in the appropriate memory location, which is

specified by the operand that follows the instruction

code. The same addressing modes used for the load

instructions apply to these instructions except for the

immediate mode. Storing the contents of a register

changes neither the register nor the status flags.

Here are the operation codes and addressing modes:

Address mode STA STX STY

absolute $8D $8E $8C operation codes

zero page $85 . $86 $84

absolute X-indexed $9D

absolute Y-indexed $99

zero-page X-indexed $95 - $94

zero-page Y-indexed - $96 -

indirect indexed $91

indexed indirect $81

You should already be acquainted with the BASIC command

corresponding to the store instructions: the POKE

command. It writes the contents of a variable to a

30

The Machine Language Book of the Commodore 64

specified address in memory. In pseudo-BASIC, the

equivalents might look like this:

STA $8000 POKE $80A

STX $C020fY POKE $C020+Y,X
STY $F1 POKE $FlfY

Store instructions are either two or three bytes in

length depending on the addressing mode used. The address

modes are the same as for the load instructions. The

flags are not affected by store instructions.

With the load and store instructions, you are now

acquainted with two important groups of instructions

which serve to communicate between the microprocessor and

the memory.

31

The Machine Language Book of the Commodore 64

C. The Transfer Instructions

The 6510 microprocessor has instructions to copy the

contents of one register to another. You can, for

example, transfer the contents of the X-register into the

accumulator or vice versa. This is quite important

because many instructions only work with the accumulator.

After executing these instructions, the contents of the

source register are unchanged; the value is merely copied

into the destination register. The transfer instructions

within the processor require the participation of the

accumulator; a direct transfer from the X to Y register

or vice versa is not possible.

All transfer instructions are one-byte instructions; they

need no operand.

Below are the individual transfer instructions and the

pseudo-BASIC commands.

TAX

The contents of the accumulator is copied into the X

register. The Z and N flags are affected, but the

original contents of the accumulator remain unchanged.

TXA A = X

32

The Machine Language Book of the Commodore 64

The contents of the X-register is copied into the

accumulator. The N and Z flags are affected. The contents

of the X-register are unchanged.

TAY Y = A

TYA A = Y

These are the corresponding instructions for the Y-

register. They work exactly like the above instructions,

but substituting the Y-register for the X register.

The next two transfer instructions affect the stack

pointer. They are seldom used, although the stack pointer

is discussed later. The stack pointer can be exchanged

only with the X-register.

TSX X = SP

The contents of the stack pointer is placed into the X-

register. The Z and N flags are set according to the

value. The contents of the stack pointer remain unaltered

by this operation.

TXS SP = X

The contents of the X-register are placed into the stack

pointer. No flags are affected by this instruction. The

contents of the X-register are unaltered.

33

The Machine Language Book of the Commodore 64

All the transfer instructions are contained in this

table, along with their instruction codes.

Command

TAX

TXA

TAY

TYA

TSX

TXS

Op code

$AA

$8A

$A8

$98

$BA

$9A

34

The Machine Language Book of the Commodore 64

D. The Arithmetic Instructions

As with most 8-bit microprocessors, the 6510 can perform

only two arithmetic operations - addition and

subtraction. Multiplication and division must be

implemented by the user. Each calculation requires two

operands which are combined to produce a result. For the

6510, the first operand is contained in the accumulator

and the second operand is obtained from memory. The

various addressing modes are used for this. The result of

the arithmetic operation is always left in the

accumulator. The comparisons with the corresponding

pseudo-BASIC commands makes this clearer.

First consider addition. The contents of the addressed

memory location are added to the accumulator and the

result is again placed back in the accumulator.

ADC #$3A A = A + $3A

If you add two 8-bit values (0 to 255), the result may

not be able to be represented by an 8-bit number. An

overflow may occur. Letfs take a look at the binary

addition:

ADC #$3A; the accumulator contains $9E.

$9E =

$3A = %00111010

35

The Machine Language Book of the Commodore 64

The addition looks like this:

10011110 $9E

+ 00111010 +$3A

10111000 = $D8

Binary addition is carried out in the same manner as

decimal addition. Four different results are possible in

binary addition:

0 + 0 = 0

0 + 1 = 1

1 + 0=1

1 + 1 = 0 plus overflow

A carry, as in decimal addition, is taken into account in

the next position. In our example, we get %10111000 or

$D8 as the answer. The result can be represented in eight

bits. Here is another example:

ADC #$3A

The accumulator now contains $E4. The addition looks like

this:

11100100 $E4

+ 00111010 +$3A

100011110 = $11E

Here the result overflows 8 bits; the answer is

%100011110 or $11E. But the accumulator holds only an 8-

36

The Machine Language Book of the Commodore 64

bit number. So the carry flag is used to indicate an

overflow. After each addition, overflow is indicated by

the carry flag. If an overflow occurs, the carry flag is

set (to 1); if no overflow occurs, the carry flag is

cleared (to 0).

You can think of the carry flag as the ninth bit of the

accumulator. If you want to add numbers which cannot be

represented in 8-bitsf multi- precision addition is used.

A 16-bit number (two 8-bit memory locations) can

represent numbers between 0 and 65535.

To add two 16-bit numbers, add the low-bytes of each

operand and then the high-bytes of each operand. If an

overflow occurs during the addition of the low-bytes,

the carry flag adjusts for this during the addition of

the high-bytes. Remember to clear the carry flag before

adding the low-bytes so that the previous contents of the

carry flag do not affect the addition. Here is an example

of adding two numbers NUM1 and NUM2 with the result being

placed in SUM:

CLC ;clear carry flag

LDA NUM1LOW ;low half of NUM1

ADC NUM2LOW ;low half of NUM2

STA SUMLOW ;low half of result

LDA NUM1HIGH ;high half of NUMl

ADC NUM2HIGH ;high half of NUM2

STA SUMHIGH ;high half of result

Now we can give the equivalent instruction in pseudo-

BASIC.

37

The Machine Language Book of the Commodore 64

ADC #$3A A = A + $3A + C

Any overflow is indicated by the carry flag after each

addition. Besides the carry flag, the zero and negative

flags are also affected, depending on whether the result

is zero or the seventh bit is set. An additional flag,

the V flag, is used for signed arithmetic. The following

table contains the operation codes for the ADC

instruction in the various addressing modes.

Address mode ADC

immediate $69 operation codes

absolute $6D

zero page $65

absolute x-indexed $7D

absolute y-indexed $79

zero-page x-indexed $75

indirect indexed $71

indexed indirect $61

Subtraction is performed in much the same way as

addition. The contents of the addressed memory location

is subtracted from the accumulator and the result is left

in the accumulator. It is possible that the result cannot

be represented in 8-bits. With subtraction, an overflow

cannot occur, only an underflow. In this case, the result

is less than zero. The carry flag indicates this too.

Since overflow and underflow have opposite meanings,

underflow is indicated by carry flag being cleared. A

38

The Machine Language Book of the Commodore 64

carry flag being set means that no underflow has

occurred. Correspondingly, the carry flag must be set

prior to subtraction (or the first byte of multi-

precision subtraction). For example:

SEC ;set carry flag for subtraction

LDA VAL1 ;subtrahend

SBC VAL2 ;minuend

BCC NEGATIVE ;carry clear means VAL2>VAL1

BCS NOTNEG ;carry set means VAL2<=VAL1

In pseudo-BASIC we can formulate this as follows:

SBC #$3A A = A - $3A - (1-C)

Binary subtraction is executed in a manner similar to

addition. There are four possible cases:

0-0 = 0

0-1 = 1 plus underflow

1-0=1

1-1 = 0

If the accumulator contains $7F, the binary

representation looks like this:

$7F

$3A %00111010

After setting the carry flag, the subtraction looks like

39

The Machine Language Book of the Commodore 64

this:

01111111

- 00111010

01000101

The result is %01000101 or $45. Since no underflow

occurs, the carry flag is set again. The next example is

somewhat different. This time the accumulator contains

$1E and the carry flag is set.

$1E %00011110

$3A %00111010

The subtraction yields the following:

00011110

- 00111010

11100100

The result is %11100100 or $E4. Because an underflow

occurred, the carry flag is cleared. How is this result

interpreted? Consider how we do subtraction using

decimal numbers. In decimal, our calculation is 30-58.

The answer is a negative number, -28. In this example,

the register contains $E4 or 228 (decimal). How are

these number related? if we subtract the result from 256,

so we get 28. The cleared carry flag after subtraction

tells us that the result must be interpreted as a

negative number.

40

The Machine Language Book of the Commodore 64

Negative numbers are represented using two's complement

notation. To find the two's complement of a number,

invert all of the bits of the binary number and then add

one to this result.

11100100 original number

gives 00011011 invert each bit

+ 00000001 plus 1

00011100 gives two's complement

The result is %00011100 or $1C or 28 in decimal.

Note that the carry flag must be cleared before addition.

After addition, a set carry flag indicates an overflow.

The carry flag must be set before subtraction. After

subtraction, a clear carry flag indicates underflow and

the result is in two's complement representation.

This table contains the operation codes for the

addressing modes.

Address mode SBC

immediate $E9 operation code

absolute $ED

zero page $E5

absolute x-indexed $FD

absolute y-indexed $F9

zero-page x-indexed $F5

indirect indexed $F1

indexed indirect $E1

41

The Machine Language Book of the Commodore 64

E. The logical instructions

The logical instructions combine two value with each

other. As with the arithmetic instructions, one operand

must be in the accumulator while the second is retrieved

from memory according to the addressing mode. After the

operation, the result is left in the accumulator. The

6510 can perform three different types of logical

operations.

The AND instruction

The AND operation compares each bit of the accumulator

with the corresponding bit in the operand. If the bit of

the accumulator AND the corresponding bit of the operand

are both set (to l)f the corresponding bit of the result

is also set to one.

0 AND 0=0

0 AND 1=0

1 AND 0=0

1 AND 1=1

The bit-wise comparison of the accumulator and operand

can be made clearer with an example.

AND #$37

42

The Machine Language Book of the Commodore 64

Say, that the accumulator contains $5D. ANDing the

accumulator with $37 gives the following:

$5D 01011101

$37 00110111

$15 00010101

The result is %00010101 or $15. This corresponds exactly

to the pseudo-BASIC instruction AND:

A = A AND $37

In this case, A = $5D AND $37 or A = 93 AND 55. We get

the answer 21 or $15. The AND operation affects the N and

Z flags. A result of zero sets the Z flag, while results

greater than $7F (127) set the N flag.

This table contains the operation codes for each addressing

Address mode AND

immediate $29 operation codes

absolute $2D

zero page $25

absolute x-indexed $3D

absolute y-indexed $39

zero-page x-indexed $35

indirect indexed $31

indexed indirect $21

43

The Machine Language Book of the Commodore 64

The OR instruction

The OR instruction compares each bit of the accumulator

with the corresponding bits of the operand. If a bit of

the accumulator OR a corresponding bit of the operand

equals 1, the corresponding bit of the result is set to

one.

0 ORA 0=0

0 ORA 1=1

1 ORA 0=1

1 ORA 1=1

You can see from the value table that this is the

"inclusive" OR. The result is one if the first operand

and/or the second operand is one, not in the sense of

either/or (but not both). The OR instruction affects the

N and Z flags. Here's an example:

ORA #$37

The accumulator contains $5D. ORing the accumulator with

$37 works like this:

$5D 01011101

$37 00110111

$7F 01111111

The result is %01111111 or $7F. This corresponds exactly

to the BASIC instruction OR:

44

The Machine Language Book of the Commodore 64

A = A OR $37

in our case, A = $5D OR $37 or A = 93 OR 55. We get 127

or $7F.

The table below contains the operation codes for each

address ing mode.

Address mode ORA

immediate $09 operation codes

absolute $0D

zero page $05

absolute x-indexed $1D

absolute y-indexed $19

zero-page x-indexed $15

indirect indexed $11

indexed indirect $01

The Exclusive OR instruction

The operand and the accumulator are compared bit by bit.

The result is set to one if either one or the other bit

is onef but not both. The truth table looks like this:

0 EOR 0=0

0 EOR 1=1

1 EOR 0=1

1 EOR 1=0

45

The Machine Language Book of the Commodore 64

The result of the operation is one if the two bits do not

equal each other. Here too the N and Z flags are affected

according to the result. There is no corresponding BASIC

instruction. In BASIC you have to compare all the bits

individually with a loop. An example looks like this:

EOR #$37

The accumulator contains $5D. EORing the accumulator with

$37 gives the following:

$5D 01011101

$37 00110111

' $6A 01101010

The result is %01101010 or $6A (106).

The table below contains the op codes for the different

addressing modes:

Address mode EOR

immediate $49 operation code
absolute $4D

zero page $45

absolute x-indexed $5D

absolute y-indexed $59

zero-page x-indexed $55

indirect indexed $51

indexed indirect $41

46

The Machine Language Book of the Commodore 64

The BIT instruction

A special feature of the 65XX microprocessors is the BIT

instruction. This instruction does not change the

contents of any registers. It affects only the flags. The

contents of the accumulator are ANDed with the contents

of the addressed memory location. If the final result is

zero, the Z flag is set, otherwise it is cleared.

Additionally, the value of the sixth bit of the addressed

location is placed into the V flag and the seventh bit is

put in the N flag. With this one can check these two bits

of a memory location without disturbing the contents of

any of the registers. Let us look at an example:

LDA #$10

BIT $1234

The accumulator contains $10; address $1234 contains $43.

The AND operation yields the following result:

$10 %00010000 ;contents of accumulator

$43 %01000011 ;contents of memory location $1234

AND %00000000 ;logical result of AND

The AND operation produces zero, so the Z is then set.

The V flag equals the sixth bit of the operand, one,

while the N flag is cleared. The result is:

Z=l;V=l;N=0.

47

The Machine Language Book of the Commodore 64 r

Two addressing modes can be used with the BIT

instruction:

Address mode BIT

zero page $24 operation codes

absolute $2C

48

The Machine Language Book of the Commodore 64

F. The Compare instructions

These instructions compare the contents of a register

and the contents of a memory location. These instructions

alter neither the register nor the memory contents,

affecting only the flags. You can determine the

relationship of the two numbers by examining the flags.

The compare instructions work by logically "subtracting11

the contents of the addressed memory contents from the

contents of the register and setting the flags as if an

actual subtration occurred. The register contents are not

changed. The £, N, and Z flags are affected depending on

the result of the "subraction". There are compare

commands for the three work registers of the

microprocessor.

The CMP instruction

This instruction compares the contents of the accumulator

with the contents of the addressed memory location, by

logically subtracting the contents of the operand from

the accumulator. If an underflow occurs, the carry flag

is cleared; otherwise it is set. If the result is zero,

the Z flag is set; otherwise it is cleared. If the result

is greater than $7F (127), the N flag is set, otherwise

it is cleared. Let us take a look at an example:

49

The Machine Language Book of the Commodore 64

LDA #$50

CMP #$30

The accumulator contains $50. The calculation $50 - $30

is then carried out, with a result of $20. Because no

underflow occurred, the carry flag is set. The zero flag

is cleared because the result is not equal to zero. The N

flag is cleared because the number is not greater than

$7F. We get the following result:

C=l; Z=0; N=0

Now another example:

LDA #$30

CMP #$30

Since the accumulator now contains $30, the logical

subtraction yields zero. The carry flag is set because no

underflow occurred. Since the result is zero, the zero

flag is set this time. The N flag is clear because the

result is not greater than $7F.

C=l;Z=l;N=0

Finally a last example:

50

The Machine Language Book of the Commodore 64

LDA #$10

CMP #$30

In this example, the accumulator contains $10 and the

logical subtraction yields $10 - $30 = $F0. The carry

flag is cleared to indicate the underflow and the Z flag

is cleared because the result is not zero. This time the

N flag is set.

C=0;Z=0;N=l

In practice, the flags indicate that the accumulator

contents are:

C = 1 : >= greater than or equal to the operand

Z = 1 : = equal to the operand

C = 0 : < less than the operand

To determine if the accumulator is greater than the

operand (not greater than or equal to), two flags must be

checked:

Z = 0 and C = 1

The compare instructions alter only the flags; they are

the basis for the conditional branch instructions

described in the next section. Note that these flag

interpretations are for comparing unsigned integers only.

51

The Machine Language Book of the Commodore 64

This table contains the operation Codies for each

addressing mode:

Address mode CMP

immediate $C9 operation codes

absolute $CD

zero-page $C5

absolute x-indexed $DD

absolute y-indexed $D9

zero-page x-indexed $D5

indirect indexed $D1

indexed indirect $C1

The CPX instruction

The CPX instruction works the same way as the CMP

instruction. Here the contents of the addressed memory

location are compared not with the contents of the

accumulator, but rather with the contents of the X-

register. The contents of the registers are not altered.

What was said above concerning the CMP instruction

applies to the CPX instruction as well. There are not as

many addressing modes for the CPX instruction, however.

Address mode CPX

immediate $E0 operation codes
absolute $EC

zero page $E4

52

The Machine Language Book of the Commodore 64

The CPY instruction

These instructions are the same as the CPX instructions

except that the Y-register is used in place of the X-

register. There are only three addressing modes.

Address mode CPY

immediate $C0 operation codes

absolute $CC

zero page $C4

53

The Machine Language Book of the Commodore 64

G. Conditional branching instructions

Next we introduce the instructions that allow you to make

programming decisions. The foundations of these decisions

are the conditions of the flags. The following four flags

can be used to make decisions: the Z flag, the N flag,

the C flag, and the V flag.

For each flag there are two conditional branch commands:

the first branches if the flag is set, the second if the

flag is clear. The operand of each conditional branch

instruction specifies the location where the micro

processor is to get the next operation code should the

condition tested for be true.

The 6510 microprocessor uses the relative addressing mode

for conditional branch instructions. The operand is not

an absolute memory address, but rather an address

relative to the current contents of the program counter.

This relative address is an 8-bit value. The relative

address is added to the contents of the program counter

and the branch is made to that computed address if the

condition tested for is true.

With this 8-bit value you can represent 256 different

numbers, so you can branch to any of 256 possible

locations. The relative address causes a branch forward

if the 8-bit value is positive and causes a branch

54

The Machine Language Book of the Commodore 64

backward if the 8-bit value is negative. So relative

addressing can perform backward branching by allowing the

use of negative operands.

Let's talk a bit about negative numbers. Using two's

complement representation all numbers having bit seven

set are considered to be negative:

%10000000

%10000001

%mii#iio
%11111111

%00000000

%00000001

%00000010

%oiiii#no
%01111111

$80

$81

...

$FE

$FF

$00

$01

$02

• . .

$7E

$7F

-128

-127

....

-2

-1

0

1

2

•. • •

126

127

The seventh bit determines if the number is positive or

negative (also the condition of the N flag). Let's look

at how we can calculate the distance for a relative

branch. The calculation is based on the address of the

instruction following the conditional branch instruction.

An example: The branch instruction is at address $C47A

and we want to branch to $C4BF.

$C47A address of branch instruction

$C47C address of next instruction

$C4BF destination address

Now we simply find the difference between destination and

55

The Machine Language Book of the Commodore 64

the address of the instruction following the conditional

branch instruction:

$C4BF - $C47C = $43

The operand for our branch instruction is $43. How do we

calculate the relative address for a backward branch? Say

we want to branch to the address $C440. You can calculate

the relative address as follows:

$C440 - $C47C = $FFC4 with underflow

Simply use the least significant byte - $C4 as the

operand for the conditional branch instruction. You could

also calculate the relative address by obtaining the

positive difference and taking the two's complement of

the result.

$C47C - $C440 = $3C

The two's complement:

%00111100 original value = $3C

%11000011 invert all bits = $C3

+ 1 add 1

%11000100 = two's complement = $C4

Here also we get an offset of $C4.

What advantages does relative addressing have? First of

56

The Machine Language Book of the Commodore 64

all, the branch instructions take up only two bytes in

memory. Besides the savings in memory there is a faster

speed of execution. A two byte instruction is executed

faster by the microprocessor. The most important

advantage of relative addressing is that the branch

address is relative to the point of execution. Since the

branch instructions do not use absolute addresses, if you

place the same program segment in a different place in

memory, the program does not have to be changed—the

location to the branch address does not change.

If the address to brarch to were given in absolute form,

it would have to be changed if the program were move to a

different memory location. The disadvantage of relative

addressing is the limited address range to which we can

branch. Only 129 bytes forward or 126 bytes backward from

the branch instruction is the maximum that can be jumped.

In practice this is usually no great hindrance, though,

because it is seldom that a larger distance is involved.

If you have found the address calculation of relative

addressing quite complicated, you can rest at ease. We

have presented this discussion only so that you

understand the principle. Later, the assembler will taKe

over this work for you; you need only give it the branch

destination. The assembler will bring it to your

attention if you attempt to jump beyond the permitted

57

The Machine Language Book of the Commodore 64

distance.

Branch on zero flag

A branch when the zero flag is set results from the

instruction "branch on equal," shortened to BEQ, If the

branch is to be made on a cleared zero flag, the

instruction is called "branch not equal," BNE.

Branch on carry flag

Here the instruction is called "branch on carry set" or

BCS for branching on a set carry flag and "branch on

carry clear", BCC, for a branch on carry clear flag.

Branch on negative flag

If the negative flag is set, the instruction "branch on

minus," BMI, will branch; in order to jump on a clear

negative flag, the instruction "branch on plus," BPL,

must be used.

58

The Machine Language Book of the Commodore 64

Branch on overflow flag

The overflow can also be used as the basis for

conditional branches. The corresponding commands are

"branch on overflow setf" BVSf and "branch on overflow

clear," BVC. Because of the secondary importance of the V

flag, these commands are seldom used.

This table contains all commands for conditional

branching, together with their op codes.

Command

BEQ

BNE

BCS

BCC

BMI

BPL

BVS

BVC

Op code

$F0

$D0

$B0

$90

$30

$10

$70

$50

59

The Machine Language Book of the Commodore 64

H. The Jump instructions

In contrast to the conditional branch commands above, the

unconditional jump instructions branches to an absolute

address. These instructions are not dependent on any

condition and is always executed. The destination address

is specified in reverse sequence (low-byte followed by

high-byte) as are the other absolute addresses.

JMP $C420 direct jump to location $C420

In addition to the absolute form of the jump instruction,

there is also an indirect addressing form, a peculiarity

of the jump instructions. With this instruction, the

specified address is not jumped to. Instead, this address

tells where to get the actual destination address. For

this, two consecutive bytes are again used as a pointer,

in the format low byte, high byte.

JMP ($0302) indirect jump to destination pointed

to by address $0302

The actual address is now taken from memory locations

$0302 and $0303. If, for example, $40 and $C8 are in

these locations, a branch to location $C840 will be made.

This method of addressing works only with the JMP

instruction. The table contains the operation codes for

60

The Machine Language Book of the Commodore 64

both addressing modes.

Address mode JMP

absolute $4C operation codes

indirect $6C

The operating system of the Commodore 64 makes use of

this method of addressing. There are several addresses

(called vectors) located from $300 to $33C, that contain

addresses for indirect JMPs. The operating system uses

these vectors for performing frequently used routines.

61

The Machine Language Book of the Commodore 64

I. The Increment and Decrement instructions

For effective programming of loops and counters, the 6510

has commands to increment or decrement the contents of a

register or memory location by one. These increment

instructions correspond, together with the conditional

branching commands, to the NEXT instruction in BASIC. The

STEP-1 instruction can be simulated with the decrement

commands.

INX

The contents of the X register are incremented by one.

The N and Z flags are set according to the result. In

BASIC, this instruction can be formulated:

X = X + 1

If a value of $FF is incremented, the overflow is not

taken into account (the carry flag is not set). The

contents are set to zero, and the Z flag is set.

INY

This is the corresponding instruction to increment the Y

register. It affects the flags in the same way.

62

The Machine Language Book of the Commodore 64

There is no instruction on the 6510 to increment or

decrement the accumulator contents.

INC

This instruction increments the contents of a memory

location by one. The Z and N flags are again set

depending on the result. This instruction is different

from the previous ones in that here the contents of a

memory location is first read, then incremented by one,

and then saved again (read - modify - write). The

commands which you are acquainted with so far either read

or wrote a memory location, but never both. The Ib-C

instruction does not alter the contents of the

accumulator.

In pseudo-BASIC, we can formulate this like so:

POKE M, PEEK(M) + 1

M is the address of the memory location.

63

The Machine Language Book of the Commodore 64

DEX

This instruction decrements the contents of the X

register. When decrement from $00 to $FF, the carry flag

is not set. The N and Z flags are set depending on the

result. In psdueo-BASIC this can be written as

X = X - 1

DEY

This instruction is the analog of the previous

instruction, decrementing the contents of Y instead of X.

The flags are affected in the same manner.

DEC

With this instruction the contents of a memory cell can

be decremented without losing the contents of the

accumulator. Its operation is equivalent to that of the

INC instruction.

Here again is the table of instructions and their

opcodes:

64

The Machine Language Book of the Commodore 64

Command Op code

INX $E8

INY $C8

DEX $CA

DEY $88

Address mode INC DEC

absolute $EE $CE operation codes

zero page $E6 $C6

absolute x-indexed $FE $DE

zero-page x-indexed $F6 $D6

65

The Machine Language Book of the Commodore 64

J. Flag manipulation instructions

In addition to the instructions whose results affect the

flags, the flags can also be directly set or cleared by

the programmer. Sometimes this is necessary before

performing addition and subtraction. These instructions

do not require any operands. They are all one-byte in

length.

The carry flag

The carry flag is set by the instruction SEC (set carry)/

and cleared by CLC (clear carry).

The SEC instruction must be used before each subtraction

and the CLC instruction before each addition, otherwise

the answer may be wrong.

The decimal flag

This flag determines whether the processor performs

addition and subtraction in binary (indicated by a

cleared flag, as we have already learned) or in binary-

coded decimal (BCD). This is the case if the flag is set.

The microprocessor then works with BCD numbers. The

instruction SED (set decimal) sets the flag, CLD (clear

66

The Machine Language Book of the Commodore 64

decimal) clears the flag.

The interrupt flag

The I flag determines whether the processor is ready to

accept an interrupt or not. If the I flag is set with SEI

(set interrupt disable), no interrupts will be accepted,

while if it is cleared with CLI (clear interrupt

disable), the processor can accept interrupts.

The overflow flag

The V flag can only be cleared on instruction. The

instruction CLV (clear overflow) serves this purpose.

This table contains the operation codes for these one-

byte commands.

Command

CLC

SEC

CLD

SED

CLI

SEI

CLV

Op code

$18

$38

$D8

$F8

$58

$78

$B8

67

The Machine Language Book of the Commodore 64

K. The Shift Instructions

The 6510 microprocessor has some instructions for which

there are no equivalents in BASIC: the shift

instructions. These instructions shift the bits in the

accumulator or addressed memory location one position to

the right or left. If these instructions are used in

reference to the accumulator, one speaks of accumulator

addressing. Depending on the addressing mode, these

commands can consist of one, two, or three bytes. If a

memory location is addressed, they behave as an INC or

DEC instruction by following a read with a write. The

contents of the accumulator remain unchanged by this

addressing mode.

ASL

ASL stands for "arithmetic shift left." It shifts the of

the addressed byte by one bit-position to the left. A

zero is placed in the right-most bit (bit 0) and the

carry flag is set equal to the left-most bit (bit 7). Let

us look at an example using the accumulator.

ASL A The accumulator contains $47

$47 %01000111

%10001110 $8E, C = 0

68

The Machine Language Book of the Commodore 64

In this case, the result is $8E and the carry flag is

cleared because the accumulator contains a zero in the

seventh position. If we compare the contents of the

accumulator before and after the shift, we notice that

the accumulator has doubled. When we shift a normal

decimal number one position left, we get the value times

ten. With the binary system, shifting left to the next

position results in only doubling the value. With the ASL

instruction we have a simple method of doubling a number.

Let us try another example:

ASL A The accumulator contains $CD

$CD

%10011010 $9A, C = 1

Here too we double the original value and the carry flag

is set. The double of $CD (205) is therefore $19A (410).

LSR

The LSR instruction (logical shift right) corresponds to

the ASL instruction; here, however, the value is shifted

right. The seventh bit is loaded with zero and bit zero

is placed in the carry flag.

LSR A The accumulator contains $CA.

69

The Machine Language Book of the Commodore 64

$CA %11001010

%01100101 $65, C = 0

The result is $65. The carry flag contains the value of

bit position 0 before the shift occurs, in this case 0.

So the carry flag is clear. You may have noticed that,

shifting one bit position to the right divides the

original value by two. The carry flag gives the contents

of bit 0 before the shift. We can interpret the value of

the carry as the remainder of the division by two. This

way we can tell if a number is odd or even. The LSR

instruction shifts the lowest bit into the carry. The

carry flag can then be tested with BCC or BCS. If a

memory location is addressed with the LSR instruction,

the contents of the accumulator are retained.

ROL

With the ROL instruction (rotate left) we can shift a

memory location or register left cyclically, that is,

rotate the bits. The carry flag is shifted into bit 0

while the contents of bit 7 are placed in the carry.

Therefore we have a cyclical shift of nine bits (8 bits

of the register plus the carry flag). An example will

clarify this.

ROL A The accumulator contains $4B,

the carry flag is set.

$4B %01001011 C=l

$97 %10010111 C=0

70

The Machine Language Book of the Commodore 64

All bits are shifted one position to the left. The carry

flag is transferred into the now-vacant bit 0. The

pushed-out seventh bit is placed into the carry. We get a

result of $97 and a cleared carry. Here again the

contents of the accumulator are doubled; any overflow is

placed into the carry.

ROR

The ROR instruction (rotate right) is the opposite of the

ROL instruction and rotates the contents of a register

cyclically one position to the right. In so doing, the

contents of the carry flag are placed into the now-free

position 7 while the pushed-out contents of bit 0 are

placed into the carry flag.

ROR A The accumulator contains $89,

the carry flag is clear.

$89 %10001001 C=0

$44 %01000100 C=l

From $89 we get $44, the carry is set and indicates a

remainder from the division by two. All shift and rotate

commands set the N and Z flags depending.on if the result

greater than $7F or equal to 0.

This table contains the operation codes for all

71

The Machine Language Book of the Commodore 64

addressing modes:

Address mode

accumulator

absolute

zero page

absolute x-indexed

zero paqe y-indexed

ASL

$0A

$0E

$06

$1E

$16

LSR

$4A

$4E

$46

$5E

$56

ROL

$2A

$2E

$26

$3E

$36

ROR

$6A operation code

$6E

$66

$7E

$76

72

The Machine Language Book of the Commodore 64

L. The Subroutine Instructions

A very important programming technique, which you already

know from BASIC, is the use of subroutines. In BASIC, the

instruction GOSUB is used to call a subroutine, and the

instruction RETURN is used to return from the subroutine.

How is a subroutine call distinguished from a normal jump

instruction such as GOTO or JMP? When we call a

subroutine, the processor or BASIC interpreter must make

note of the location from which the subroutine was called

so that the RETURN instruction can branch back to the

location following the call. The BASIC interpreter does

this for us; the 6510 also handles this task for us in

machine language. In spite of this, however, we should

i
know how it works.

So that the processor knows which instruction to branch

back to on a RETURN instruction, the current address of

the program counter is saved when the call is made. A

special storage area is reserved for this, called the

stack. This stack lies from address $0100 to $01FF (256

to 511). There is something called a stack pointer so

that the microprocessor knows at which address of the

stack it can save a return address. We have already been

introduced to the stack register. Let's take a look at

what happens when a subroutine is called.

The processor takes the current contents of the program

73

The Machine Language Book of the Commodore 64

counter (+ 2) and divides it into high and low bytes. The

high byte is stored at address $100 plus SP. Then the

contents of the stack pointer are decremented by one and

the low byte is stored on the stack (address 100 + SP),

Finally the stack pointer is decremented by one again.

Now a branch is made to the subroutine.

When the processor encounters an RTS instruction, the

opposite process takes place. The stack pointer is

incremented by one and one byte is taken from the stack

(address $100 + SP). This byte is used as the low-byte of

the program counter. Then the stack pointer is

incremented again and the high-byte of the program

counter is fetched from the stack. Now the program

counter points to the next instruction after the

subroutine call and the program is continued there.

When values are placed on the stack, the value is first

saved on the stack and then the stack pointer is

decremented by one. When getting a byte back from the

stack, the stack pointer is first incremented by one. The

stack grows from top to bottom (from $1FF to $100). An

example will explain these events.

$C480 JSR $2000 SP = $FA

$01FA = $C4 SP=SP-1

$01F9 = $82 SP=SP-1

SP = $F8

74

The Machine Language Book of the Commodore 64

Now execution branches to $2000, where for our example,

there is a RETURN instruction.

$2000 RTS SP = $F8

SP=SP+1

SP=SP+1

SP = $FA

PCL =

PCH =

($01F9)

($O1FA)

= $82

= $C4

The program counter now contains $C482. This value is

then incremented by one and so points to $C483, the next

instruction after the subroutine call at address $C480.

The stack works on the principle "Last In—First Out"

(LIFO). The value last placed on the stack is the first

value to be returned. Using this principle, it is also

possible to nest subroutines. If a subroutine is called

from another subroutine, the first RTS instruction

encountered returns the instruction following the most

recent JSR instruction. The next RTS instruction then

returns control to the instruction following the next

most recent JSR instruction. For example:

this JSR this JSR

calls this subroutine

MAINPGM

calls this subroutine

JSR SUB1

RTS returns to this

instruction

returns to this

instruction

75

The Machine Language Book of the Commodore 64

Once you become familiar with the operation of the stackr

you can also use it for temporary storage of data. This

is described in the next section.

The table contains the operation codes for subroutine

call and return.

Command Op code

JSR $20

RTS $60

76

The Machine Language Book of the Commodore 64

M. The Stack Instructions

The 6510 has the ability to save the contents of the

accumulator and the status register on the stack and to

get them back again. The stack pointer is automatically

decremented after writing and incremented before reading.

PHA

The instruction PHA (push accumulator) saves the contents

of the accumulator on the stack and decrements the stack

pointer by one. The contents of the accumulator are

unchanged.

PHP

With the PHP instruction (push processor status), the

entire status register (contents of the flags) is placed

on the stack and the stack pointer is decremented by one.

The contents of the status register are retained.

PLA

The PLA instruction (pull accumulator) is the opposite of

PHA. The stack pointer is incremented and a byte read

77

The Machine Language Book of the Commodore 64

from the stack into the accumulator. The N and Z flags

are set according to the value.

PLP

With this instruction, one byte is fetched from the stack

and placed in the status register. This is the complement

of PHP.

The table contains the operation codes.

Command Op code

PHA $48

PHP $08

PLA $68

PLP $28

78

The Machine Language Book of the Commodore 64

N. Instructions for handling interrupts

We are not going to use use these instructions but

mention them only for the sake of completeness. The 6510

has the ability to interrupt a program from the outside

world. For this, the interrupt line (IRQ, interrupt

request) of the processor must be activated. The

interrupt procedure is similar to a subroutine call. The

processor interrupts the current program and places the

contents of the program counter and the status register

on the stack. Now execution branches to the address

contained at $FFFE and $FFFF. The contents of these

addresses are used as the new program counter.

In addition to an interruption from the outside, the 6510

can also interrupt a program through a instruction from

within the program. The instruction BRK (break) serves

this purpose. The program counter and the status register

are saved on the stack.

In order to return to the main program from an interrupt

routine, there is a instruction similar to the RTS

instruction for subroutines. The instruction RTI (return

from interrupt) gets the program counter and the contents

of the status register back from the stack so that the

program can continue without changing the flags.

The following table contains the operation codes for

79

The Machine Language Book of the Commodore 64

these commands:

Command Op code

BRK $00

RTI $40

There is one instruction which has not been mentioned yet

which does absolutely nothing and so is called NOP (no

operation). This instruction is used to remove operation

codes from a program without shifting the rest of the

commands, as well as in delay loops (this instruction too

requires a certain amount of time to execute).

Command Op code

NOP $EA

80

The Machine Language Book of the Commodore 64

4. Entering Machine Language Programs

Now that we have become acquainted with the instructions of

the microprocessor and their functions, let's turn our

thoughts to writing programs in machine language. How do we

enter such programs?

As we have already seen from the descriptions of the

instructions, a machine language program program consists

simply of a set of instruction codes and their corresponding

operands, if any. As a simple example, we will display a

character on the screen of the Commodore 64. We can do this

with these simple POKE commands in BASIC:

POKE 1024,1 : REM DISPLAY CODE FOR A

POKE 55296,7 : REM COLOR CODE FOR YELLOW

When we execute both commands, a yellow "A" appears in the

upper left-hand corner of the display. Now we want to see

how these two commands can be performed in machine language.

For this, we recall that the POKE command can be replaced by

the instruction STA. This instruction places the contents of

the accumulator at the address specified by the operand.

First load the accumulator with the desired value.

LDA #1

STA 1024

Here the accumulator is loaded with the value 1 and the

81

The Machine Language Book of the Commodore 64

contents are saved at address 1024. In the same way, we can

set the value for the color code.

LDA #7

STA 55296

If we were to try entering these instructions directly into

the computer, we would get a ?SYNTAX ERROR. The Commodore 64

normally understands only BASIC commands. These

instructions are "foreign" to the BASIC interpreter.

Therefore we must proceed in a different manner. Recall that

a machine language program is nothing more that a group of

binary instruction codes and operands in memory.

We must convert the mnemonic instructions into their

corresponding binary instruction (or operation) codes. To do

this, we use the table in Appendix A. For a LDA instruction

using the immediate addressing mode(we want to load the

accumulator with the number 1, not with the contents of

memory location 1) we find that the opcode is $A9. Next

follows the operand itself, 1. We are using absolute

addressing for the STA instruction. The instruction is

therefore $8D. The operand in this case is a memory address,

saved as a 16-bit value. For this it must be divided into

two 8-bit values. First comes the low-byte and then the

high-byte. Separating a 16-bit value is easier to perform if

we first convert the number to hexadecimal. Therefore we

convert 1024 to the hexadecimal number $0400. 55296 becomes

82

The Machine Language Book of the Commodore 64

$D800. Let's rewrite our program using hexadecimal numbers.

LDA #$01

STA $0400

LDA #$07

STA $D800

The low-byte of $0400 is $00 and the high-byte is $04. The

instruction STA $0400 is represented as $8Df $00f $04. LDA

#$07 STA $D800 are represented as $A9f $07, $8D, $00, $D8.

Our complete program looks like this:

$A9, $01, $8D, $00, $04, $A9, $07, $8D, $00, $ D8

This set of bytes must now placed in memory. Here we

encounter the next problem: Where should our program be

placed in memory? We must find an area which is not used by

the operating system or the BASIC interpreter. For the

Commodore 64 we have such an area from address 49152 to

53247 or $C000 to $CFFF. This area is 4K bytes large and

will suffice even for very large machine language programs.

Let's place our program in memory beginning at address

49152. We can do this with a small BASIC program. First

change the hexadecimal numbers to decimal.

169, 0, 141, 0, 4, 169, 7, 141, 0, 216

100 FOR 1=0 TO 9

110 READ A : POKE 49152+1,A

120 NEXT

130 DATA 169,0,141,0,4,169,7,141,0,216

83

The Machine Language Book of the Commodore 64

When we RUN this program, the machine language program is

usually placed into memory beginning at address 49152. Now

we can finally execute our program. The SYS instruction is

used for this in BASIC. If we give the starting address of

49152 after the SYS instruction, the program is executed

from BASIC. Be careful 1 What happens once the processor has

executed the instruction STA $D800? It gets the contents of

the next memory location and interprets it as a instruction

code. If it is not a legal instruction, the processor may

enter an uncontrollable state and "crash." You must then

turn the computer off and then on again. The program is lost

and you must start over from the beginning.

Once the processor has executed the four instructions,

control should be returned to the BASIC interpreter. The SYS

instruction executes our program as a subroutine. We should

end the program with an RTS instruction.

POKE 49152+10,96

We can place tine RTS code at the end of our program. Now we

can start our program with:

SYS 49152

Immediately a yellow A appears in the upper corner of the

display and the computer responds with READY..

84

The Machine Language Book of the Commodore 64

Is this procedure too complicated for you? If so, then you

are not alone. Ways have been found to automate this

process. After all, this is why you have has a computer!

You need a program that accepts machine language

instructions such as "LDA #1" and automatically converts the

mnemonics to their proper operation code and writes the

generated code into memory. Such a program is called an

assembler. So that you can start working with an assembler

from the beginning and not lose your desire by working

through boring calculations and table consultations, we have

written a complete assembler for you. Before we explain the

operation of the assembler, we will take a look at other

utility programs that can be used for machine language

programming.

The first is the monitor program. A monitor permits the

direct access of the memory and registers of the

microprocessor. With the monitor you can examine and alter

the contents of memory and registers. In addition, you can

start executing a machine language program from a monitor.

Most monitor programs also permit saving and loading of

programs to/from cassette or disk. If you have a monitor,

then you can enter your machine language programs in hex

code. This is fine for small programs or changes. Often the

monitor contains something called a disassembler as well.

Such a program is the opposite of an assembler. The

disassembler reads a program from memory and outputs it in

85

The Machine Language Book of the Commodore 64

mnemonic form; $A9, $01 are translated to LDA #$01, for

example. We have also written a disassembler. It is

presented later. Using this program you can disassemble not

only your own programs, but parts of the operating system

and BASIC interpreter as well. You can often get valuable

hints by looking at other example of good programming.

86

The Machine Language Book of the Commodore 64

4. The Assembler

Here's a small machine language program that demonstrates

the advantages of an assembler over manual entry of a

machine language program.

This program displays the entire character set of the

Commodore 64 on the screen. We'll do this first with a BASIC

program.

The Commodore 64 can display 256 different characters on the

screen; the display codes range from 0 to 255. Each display

code places a unique character on the screen. Using BASIC

you can do this with a loop.

100 X = 0

110 A = X

120 POKE 1024+Xf A : REM DISPLAY CODE

130 A = 1

140 POKE 55296+X, A : REM COLOR CODE

150 X = X + 1

160 IF X <> 256 THEN 110

170 END

If you RUN this program, the entire character set of the

Commodore 64 is displayed. Note that the time to RUN this

program is about 7 seconds.

This BASIC program is written so that you can easily convert

it to machine language. Now for the conversion! We'll handle

it line by line. First we can use the X-register in place of

87

The Machine Language Book of the Commodore 64

* ••

the variable X:

100 X = 0 => LDX #$0

We can use the accumulator in place of the variable A. The

next line copies the contents of the X-register into the

accumulator:

110 A = X => TAX

The contents of the X-register remains unchanged. Now

the contents of the accumulator are place into memory at

location 1024+X. Indexed addressing is used:

120 POKE 1024+X, A => STA 1024 ,X

Next the accumulator is loaded with the color code for

white, 1.

130 A = 1 => LDA #1

This color code is then stored in the corresponding color

memory location, 55296+X. Again indexed addressing is used:

140 POKE 55296+X,A => STA 55296,X

The value in the X-register is now incremented by one:

150 X = X + 1 => INX

88

The Machine Language Book of the Commodore 64

The next conversion is not as straight-forward:

160 IF X <> 256 THEN 110 => ?

This BASIC statement requires some consideration. We want to

branch back to line 110 if the contents of X is not equal to

256. But the X-register can hold values only up to 255. What

happens when the X-register contains 255 and an INX

instruction (in line 150) is executed? Incrementing from 255

($FF) we get $100. The overflow is simply ignored and the

result is $00—zero.

How can we recognize this case? Recall the discussion

concerning the flags. Each time the X-register is

incremented, the N and Z flags are also affected. After the

INX instruction, if the value in the X-register is greater

than $7F (127), the N flag is set, otherwise it is cleaned.

Similarly if the value in the X-register is zero after the

INX instruction, the Z flag is set, otherwise it is cleared.

So can use the contents of the zero flag as the basis of our

decision. If it is not set, the contents are not equal to

256 (0) and we must branch back to line 110.

160 IF X <> 256 THEN 110 => BNE line 110

Here's another problem. In machine language programming we

cannot say "branch to line 110". Instead we must specify the

memory address at which the instruction,in line 110 is

, 89

The Machine Language Book of the Commodore 64

located.

We do not know what the address is yet. We must determine

the program starting address and the length of each

instruction. If we begin the program at address 49152 or

$C000, then these are the addresses of each instruction:

LINE# ADDRESS MNEMONIC

100

110

120

130

140

150

160

170

$C000

$C002

$C003

$C006

$C008

$C00B

$C00C

$C00E

LDX

TXA

STA

LDA

STA

I NX

BNE

RTS

#0

$0400,X

#1

$D800,X

$C002

How did we do this? First set a "program counter" to the

starting address of the program. In this case it starts at

$C000. Now find the length of each instruction by looking

in Appendix D. The length is either one, two or three bytes.

Update the "program counter" by adding the length of the

instruction. The "program counter" now contains the address

of the next instruction. Repeat this for each instruction.

After hand assembling the program, we find that the

instruction at line 160 must branch to address $C002. Now

take the trouble to convert the program to generate the

machine code. Here's the code:

90

The Machine Language Book of the Commodore 64

100

110

120

130

140

150

160

170

$C000

$C002

$C003

$C006

$C008

$CO0B

$C00C

$C00E

A2

8A

9D

A9

9D

E8

DO

60

00

00 04

01

00 D8

??

LDX

TXA

STA

LDA

STA

I NX

BNE

RTS

$0

$0400,X

#1

$D800fX

$C002

We can substitute the operation code for the mnemonic

according to APPENDIX A. We must convert the 16-bit absolute

addresses found in line 120 and 140 to their reverse forms

(00 04 and 00 D8). Next we must calculate the missing offset

for the branch instruction in line 160. To do this, first

form the positive difference between the addresses and form

the two's complement of the result.

$C00E

- $C002

$000C

$0C = %00001100 original value

%11110011 invert all bits

+ 1 add 1

$F4 %11110100 two's complement

We find that the offset is $F4. Enter this value as the

operand of the BNE instruction above.

We have completed the hand assembly of this program. To test

the program, the machine language program has to be in

memory. You have to write the operation codes into memory

somehow such as POKing them.

91

The Machine Language Book of the Commodore 64

Here's an example:

100 REM SAMPLE ML PROGRAM TO DISPLAY CHARACTERS ON SCREEN

150 ML = 49152

200 FOR I = 0 TO 14

210 READ OC

220 POKE ML+IfOC

230 NEXT I

240 END

300 DATA 160, 0, 138, 157, 0, 4, 169, 1

310 DATA 157, 0, 216, 232, 208, 244, 96

Run the BASIc program to put the machine language routine in

memory beginning at 49152. Now to test it, move the cursor

to the lower half of the screen and enter:

SYS 49152

Almost immediately, the entire character set appears on the

screen. The program which took more than seven seconds to

run in BASIC now runs in a fraction of a second. It is an

impressive demonstration of the speed which can be attained

with machine language.

Now let's use the LEA (Lothar Englisch Assembler - named

after the author) to enter machine language programs. An

assembler makes machine language programming quicker,

easier and less prone to error. Using the LEA, you can enter

machine language programs into the computer in exactly the

same way as you enter BASIC programs. You can add, delete or

insert or change lines just as in BASIC. The listing for

the LEA is at the end of this chapter.

92

The Machine Language Book of the Commodore 64

A program line is called a source statement. When using the

LEA, the source statement always begins with a line number.

It also has: an optional label (more about this shortly);

the mnemonic code for the machine language instruction (LDA,

STAf etc.); any required or optional operand(s); and

optional comments. By using comments within your assembler

source program, you can describe the purpose of each

instruction. Comments are denoted with a semicolon and are

ignored by the assembler, but appear in the listing for your

own information. They correspond to the BASIC command REM.

A complete line of assembler source for the LEA might look

like this:

100 TEXT LDA $70,X ;GET START VALUE

A complete LEA source program can also be SAVEd to disk,

just like BASIC. The LEA requires you to distinguish this

source program from the machine language program that it

later creates by suffixing .SRC to the name. After you

create your assembler source file, you then load the LEA

assembler. Once started with RUN, LEA asks for the name of

the program to be assembled (the one you just SAVEd). The

LEA reads this program from the disk and creates the machine

code program from it, which it places directly in memory.

In addition, the LEA produces an optional assembly listing

containing the line numbers, source statement instructions

93

The Machine Language Book of the Commodore 64

including comments and generated machine codes in

hexadecimal format. When assembling, the LEA automatically

calculates the addresses and offsets for branches. You as

the programmer, need give the branch destination not as an

absolute address, but symbolically in the form of a label

(also called symbol). Our example program from before looks

like this:

100

110

120

130

140

150

160

170

LOOP

LDX

TXA

STA

LDA

STA

I NX

BNE

RTS

#0

$0400,X

#1

$D800,X

LOOP

Here we simply give a label to the address that we want to

refer to later. In this case we used the symbol LOOP. As the

assembler processes the source program, it encounters a

label. It makes note of the label, LOOP, and the value the

program counter at which the label (or symbol) is found. In

our example, the program counter has the value $C002 at line

110. The assembler assigns this value to the symbol LOOP.

Later, the offset for the branch instruction can be

calculated from the immediate value of the program counter

and the value of the symbol. As the assembler works its way

through the source program, it automatically places the

operation code for the mnemonic instructions and their

operands in memory so that the machine language program is

ready to be executed at the end of the assembly.

94

The Machine Language Book of the Commodore 64

Using this technique, it is possible that you might refer to

a label before it is defined:

100

110

120

130 CONT

140

LDA

BEQ

LDX

STX

RTS

$40

CONT

#$FF

$D840

In this program line 110 refers to a label (CONT) which at

that point is not yet defined. The assembler has no way of

knowing the value of the symbol CONT. So the assembler is

designed to go though the source program twice. The first

time through, the LEA makes note of all the symbols and

their values. The second time through, it does the actual

assembling or code generation. So during the second time

through, when the LEA comes to line 110, it already knows

the value of CONT from the first time through and can

calculate the offset for the branch instruction.

Since the LEA assembler reads the source program twice, it

is said to be a 2-pass assembler. So that you can see the

progress of the assembler, the LEA displays the number of

the line it is currently working on.

When you enter a source program by using the built-in BASIC

line editor, the BASIC interpreter searches through the

source statements for BASIC command keywords. When it finds

them, it converts these into one-byte codes called tokens.

As a result, the LEA assembler cannot normally recognize

95

The Machine Language Book of the Commodore 64

words that contain BASIC keywords such as 0Nf TO, and even =

and * because they have been converted to tokens. For this

reason, you must first enter and RUN the following BASIC

program, called UNTOKEN before using the BASIC line editor

to create the assembler source file. UNTOKEN inhibits BASIC

from tokenizing normal BASIC keywords. Thus BASIC keywords

are not be converted to their corresponding tokens. This

enables the LEA to recognize their untokenized equivalents

in normal text.

When you are finished using the LEA, and you want to enter

normal BASIC programs again, enter the instruction:

SYS 53181

This re-enables BASIC to tokenize its keywords.

0 REM PROGRAM UNTOKEN

100 FOR I = 53100 TO 53191

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 169,119,160,207,141, 2, 3,140, 3, 3, 96, 32

130 DATA 96,165,134,122,132,123, 32,115, 0,170,240,243

140 DATA 162,255,134, 58,144, 6, 32,121,165, 76,225,167

150 DATA 32,107,169,160, 0,162, 0,189, 0, 2,232,201

160 DATA 32,240,248,201, 48,144, 4,201, 58,144,240,153

170 DATA 0, 2,201, 0,240, 7,189, 0, 2,200,232,208

180 DATA 242,200,200,200,200,200, 76,162,164,169,131,160

190 DATA 164,141, 2, 3,140, 3, 3, 96

200 IF S <> 11096 THEN PRINT "ERROR IN DATA 11" : END
210 SYS 53100 : PRINT "OK"

After you key in this program, you should save a copy on

each diskette on which you will later store assembler source

96

The Machine Language Book of the Commodore 64

programs. Remember to load and RUN UNTOKEN before creating

assembler source programs.

Now enter the earlier sample program. Insert line 180 which

contains .EN. This is a pseudo-instruction which tells the

assembler that this statement is at the end of your source

program. Save the source program on disk with the name

TEST.SRC.

Did you remember to first LOAD and RUN the above UNTOKEN

program? Now you can load the LEA assembler and RUN it. The

following appears on the screen. Respond as requested.

6510 - ASSEMBLER

SOURCE FILE NAME ? TEST

LISTING Y/N ? Y

PRINTER Y/N ? N

After a short time the message PASS 1 appears on the screen

and the disk drive shows some activity. Now the line numbers

from 100 to 180 appear on the screen. During the second

pass, the listing is displayed:

PASS 2

cooo

C002

C003

C006

C008

C00B

cooc

C00E

LABEL

A2

8A

9D

A9

9D

E8

DO

60

C002

00

00 04

01

00 D8

F4

100

110 LOOP

120

130

140

150

160

170

180

LDX

TXA

STA

LDA

STA

INX

BNE

RTS

.EN

#0

$0400fX

#1

$D800,X

LOOP

97

The Machine Language Book of the Commodore 64

When the listing is completed, the LEA assembler asks you if

the generated machine language program should be saved to

diskette. Answer with Y(es).

SAVE Y/N ? Y

The program is saved to diskette under the name TEST.OBJ on

the diskette (OBJ = OBJect program). Statistics about the

generated code and errors are also displayed:

C000 / COOF / 000F

SOURCE FILE IS TEST.SRC

0 ERRORS

The assembler offers the option of displaying all the

symbols and their values.

SYMBOL TABLE Y/N ? Y

SORT Y/N ? N

LOOP CO0 2

You can also specify that the table is to be sorted

alphabetically.

The generated machine language program is now contained on

the diskette with the name TEST.OBJ. There is also a copy of

it in memory, ready to be executed. Now test it out by

entering:

SYS 49152

98

The Machine Language Book of the Commodore 64

The entire character set appears on the screen almost

immediately.

There are a few things about the assembler you should know.

Each line of the source program consists of a line number,

an optional symbol (also called label), and a mnemonic

instruction such as LDA, followed by the operands (if

necessary) and comments separated by a semicolon. The

comments may be omitted of course, but we advise you to make

liberal use of these and describe exactly the operations you

intend. Should you lay your program aside and need to use or

change it at a later time, you will be thankful that you

commented it.

The symbols may be maximum of five characters in length. In

addition to the implicit symbol definitions (labels), you

can assign values to symbols directly. This makes programs

easier to understand and easier to read.

In this example, we use symbols for the addresses of the

color and screen memory:

PASS 2

0400

D800

COOO

COOO

C002

C003

C006

C008

C00B

COOC

C00E

A2

8A

9D

A9

9D

E8

DO

60

00

00 04

01

00 D8

F4

70 VIDEO

80 COLOR

90

100

110 LOOP

120

130

140

150

160

170

180

=

=

* =

LDX

TXA

STA

LDA

STA

I NX

BNE

RTS

• EN

$400

$D800

$C000

#0

VIDEO,X

#1
COLOR,X

LOOP

99

The Machine Language Book of the Commodore 64

If you assemble this program and display the sorted symbol

table, you will see:

COLOR D800 LOOP C002

VIDEO 0400

Line 70 contains a pseudo-instruction = which directs the

assembler to assign the value $0400 to the symbol VIDEO.

Anytime you use the symbol VIDEO, the assembler knows to use

the value $0400 to calculate the operands.

Line 90 contains another pseudo-instruction, *=. It tells

the assembler to begin the assembly process at memory

location $C000. It is placed at the start of each program.

Using it, you can instruct the assembler to place your code

at any desired place in memory.

What are the advantages of using symbols? There are two main

advantages. First, through the choice of name, the purpose

of an individual memory location can be easily determined

(e.g. COLOR). Second, such a program is easier to change. If

you enter the wrong location of the video RAM, you need only

change the value of VIDEO at the beginning of the program.

All references to this name are then changed. This is even

more useful the more times such a name appears in a program.

A pseudo-instruction, gives processing directions to the

assembler. For example, the pseudo-instruction .BY, tells

100

The Machine Language Book of the Commodore 64

the assembler to place specific values in the machine

language program. You can, for example, store data or text

within your machine language program. The pseudo-instruction

for this is called:

.BY

An operand in the range from 0 to 255 must follow the .BY

pseudo-instruction. This operand value is placed at the

current location of the program counter. Using .BY, you can

insert symbols and constants into the program. For example:

.BY 100

.BY $7F

.BY CR

•BY has an additional option. Sometimes, you have to divide

a 16-bit value into two 8-bit values. The operators > and <

allow you to do this. The > symbol denotes the high-byte

(bits 8 through 15) of a 16-bit value, while the < symbol

denotes the low-byte (bits 0 to 7). Here's an example:

100 CONST = $AB3F

110 .BY <CONST

120 .BY >CONST

This program segment places the values $3F and $AB in the

program. These operators can be used for immediate

addressing with the # character, for example:

101

The Machine Language Book of the Commodore 64

130 LDA #<CONST

140 LDY #>CONST

In order to use zero-page addressing, you must prefix

operands with an asterisk, *. If you don't, the assembler

uses absolute addressing. This is not necessary for indexed

addressing which works only with zero-page addresses.

00B0 100 START = $B0

C000 AD BO 00 110 LDA START

C003 A4 B0 120 LDY *START

C005 8D 27 00 130 STA $27

C008 84 60 140 STY *$60

C00A 24 B0 150 BIT *START

The above example shows you that without the asterisk (lines

110 and 130), an absolute addressing mode, three-byte form

of the instruction is generated. The zero-page addressing

mode is selected by placing the asterisk in front of the

operand, resulting in a two-byte instruction (lines 120, 140

and 150).

Now that you are acquainted with the functions of the LEA

assembler, you can concentrate on programming. On the next

pages you find the listing of the LEA assembler and a short

description of the operations and the variables used by the.

program.

Try not to key the listing "blindly". Read the description

of the routines as you go along, and try to understand how

the assembler works. By doing this, you can learn not only

102

The Machine Language Book of the Commodore 64

about the operation of the assembler, but also something

about machine language as well.

You can also order a diskette containing the LEA assembler,

6510 Single-Step Simulator and Disassembler. This saves you

the time and effort of keying these programs from the

listings. See ordering instructions in APPENDIX F.

103

The Machine Language Book of the Commodore 64

100 REM 6510 ASSEMBLER

110 PRINT CHR*(147):PRINT:PRINT:PRINT,"6510 ASSEMBLER":PRINT:DG=8

120 INPUT"SOURCE FILE NAME "; SN$

130 IFRIGHT*(SN$,4)=".SRC"THENSN*=LEFT*(SN*,LEN(SN*)-4)

140 DD$="O":REM DRIVE NUMBER

150 INPUT"LISTING Y/N " 5 A*: IFA$<>"Y"THENPM=1: G0T0190

160 PF=4:PG=3

170 INPUT"PRINTER Y/N ";A*:IFA*="Y"THENPG=4

180 OPENPF,PG

190 G0SUB5000:REM BUILD TABLES

200 A=0:AD=49152:PRINT:PRINT:PA=A

210 PR I NT "PASS l":G0SUB4000:PRINT"PASS 2" : FF7.=0: FE7.=0

220 OP*=DD*+":"+SN*+".SRC"

230 0PEN8,DG,0,0P$

240 GET#8,A$,A$:REM START ADDRESS

250 IFPM=1THENPRINTCHR*(145 >,,ZN$

260 F7.=0 : I FAD>65535THENPR I NT: PR I NT: PR I NT " MEMORY OVERFLOW ! " : GOTO 1000

270 A=AD:G0SUB3240:PR*=A*+" ":G0SUB2000:IFLEFT* < X*,3)=".EN"I HEN1000

280 XX$=LEFT$<X*,1):IFXX*="*"THENPR*=" ":LN$="

290 IFXX$«" . ll0RXX*="*"0RXX$=" = llTHENGQSUB2900: GOT0380

295 IFXX*=""THENPR$=PR*+" ":G0T0430

300 0NLM7.G0T0320

310 SA=OF+AD:PA=AD:LM7.= 1

320 XX*=LEFT*(X$,3> : F0RJ-0T0NN7.: IFXX$=MN$ (3) THEN350

330 NEXT

340 FL$ < 1) = " A " : A7.= 1: F7.= 1: GOSUB1520: 60T0370

350 G0SUB2400: F7.=0: I FT7.=5ANDT7. < J , 9) >0THENT7.=9: REM RELA T IVE

360 0NT7.+1G0SUB500,600,600,600,600,800,800,800,500,900,600,600,800

370 POKE OF+AD,A

380 AD=AD+A7.:IFLEFT*<X*,2>="*="THEN400

390 LX=AD

400 REM ******** OUTPUT

410 IFF"/.=0THENIFFL*<0>=" "ANDFL*<1)=" "ANDFL*<2)=" "THEN43O

420 BS7.=BS7.+ 1

430 0NPMG0T0250

440 Y*=LEFT*(Y'$+" ",11) : FQRI = lTQ3s PRIMT#PF,FL* (I) ; sNEX'l

450 PRINT#PF,PR*ZN*LN*" "LEFT*(X*+" ",6)Y*" "RM*

460 GOTO 250

500 REM ONE-BYTE COMMANDS

510 A7.= 15 A=T7. (J , 77.> : IFA<OTHENFL* (2) = "A" : GOTO 1510

520 G0SUB3240:PR*=PR$+RIGHT*<A*,2)+" ":RETURN

600 REM TWO-BYTE COMMANDS

610 A=T7.(J,T7.) : IFA<OTHENFL$ <2) ="A" : GOTO 1500

620 G0SUB3240:PR$=PR*+RIGHT$<A*,2)

630 YY*=YA*:IFLEFT*(YY$,l)="tt"THENYY*=MID*(YY*,2)

640 IFLEFT* < YY*,1)="*"THENYY$=MID*(YY*,2)

650 A7.=2: IFLEFT* (YY* , 1) = " > "ORLEFT* (YY*, 1) = " < " THENYY*=M ID* (YY*, 2)

660 A$=LEFT*(YY$,1):IFA*="$"ORA*>"/"ANDA$<":"1HENA*=YY*:GOT0690

670 SL*=YY*:G0SUB4500

680 A$="*"+HE*

690 G0SUB3100

700 IFLEFT*(YA*,2)="# >"THENA=INT < A/HI)

710 IFLEFT* (YA*,2) ="#< "THENA==A-INT (A/HI) *HI

720 I FA >LOTHENFL* (2) = " 0 " : F7.= 1: A=0

730 G0SUB3240:P0KE0F+AD+l,AL7.:PR*=PR*+" "+RIGHT* ("00"+A* ,2) + "

740 A=T7. (J , T7.) : RETURN

104

The Machine Language Book of the Commodore 64

800 REM THREE-BYTE COMMANDS

810 A7.=3

820 A=T7. (J,T7.)

830 G0SUB3240:PR$=PR$+R16HT$ (A*,2)

840 A$=LEFT*(YA*,1) : IFA*="*11ORA*>"/"ANDA*< " : "THENA*=YA*:G0T0870

850 SL$=YA*:G0SUB4500

860 A$="$"+HE$

870 G0SUB3100:G0SUB3240:PR$=PR$+" "+RIGHT$("00"+A$,2)+ " "+LEFT*
(A*,2)+" "

880 POKEOF+AD+1 , AL7.: P0KE0F+AD+2, AH7.

890 A=T7. (J , T7.) : RETURN

900 REM RELATIVE

910 A7.=2

920 A=T7. (J , T7.) : G0SUB3240 s PR$=PR*+R 1GHT$ (A*, 2)

930 A*=LEFT$(Y*, 1) : IFA$="$"aRA$>" /"ANDA*< " : "THENA*=Y*:G0T0960

940 SL$=Y$:G0SUB4500

950 A*=M*"+HE*

960 G0SUB3100:IFFL$(2 > ="U"THENA=AD+2

970 DF=A-(AD+2> : IFDF<-1280RDF>127THENFL* (3) ="R" : F7.= l: DF=O

980 A=DFANDL0:GOSUB324O

990 PR$=PR*+" "+RIGHT*(A$,2)+" ": POKEOF+AD+1 , A: A=T7. (J ,T7.) : RETURN

1000 PR$= " " : I FF7.=0THEN 1020

1010 BS7.=BS7.+ 1

1020 IFAE<AD+OFTHENAE=AD+OF

1030 ONPMG0T0106O

1040 FQRI-0TQ3:PRINT#PF,FL*(I);:NEXT

1050 PRINT#PF,PR*,ZN*,LN*" "LEFT*(X*+" ",6)Y*" "RM*

1060 CL0SE8: INPUT "SAVE Y/N " 5 A*: IFA*O"Y"THEN1130

1070 A$=DD$+":"+SN$+".OBJ"

1080 A7.=LEN (A* > : POKE 183, A7.: POKE 187 ,681ANDLO: POKE 188,681 /HI

1090 F0RI = lT0A7.:P0KE6B0+I,ASC<MID*<A*,I>) : NEXT: REM FILENAME

1100 A=SA:G0SUB3240:P0KE251 , AL7.: P0KE252, AH7.: REM START ADDRESS

1110 A=AE: G0SUB3240: P0KE781 , AL7.: P0KE782, AH7.: REM END ADDRESS

1120 P0KE780,251:SYS65496:REM SAVE

1130 A=PA:G0SUB3240:PA*=A$:A=AD:G0SUB3240:AD*=A*:A=AD-PA:G0SUB3240

1140 BA$=A$:0NPM60T011B0

1150 PRINT#PF:PRINT#PF,PA*" / "AD*" / "BA$

1160 PRINT#PF,"SOURCE FILE IS "SN*+".SRC"

1170 PRINT#PF,BS7."ERR0R(S> ":PRINT#PF

1180 INPUT"SYMBOL TABLE Y/N "5Z*:IFZ*<>"Y"THEN1400

1190 MX=2:IFPG>3THENPRINT#PF,CHR*<12):MX=5

1200 INPUT"SORT Y/N ";Z*:IFZ*="Y"THEN1300

1210 0NPMG0T01220

1220 M7.=0:P*="":FORI=LL7.TOUL7.

1230 IFLB*(I)=" "THEN1290

1240 P$=P$+LB$ < I) + " " +HE* (I) + " " : M7.=M7.+1

1250 IFM7.OMXTHEN1290

1260 0NPMG0T01280

1270 PRINT#PF,P*

1280 P$= " " : M"/.=0: IFI >=UL7.THEN 1400

1290 NEXTI:IFP*<>""THEN1260

1300 HI *=CHR* (127) +CHR* (127) +CHR$ (127) +CHR* (127) +CHR* (127): F7.=0

:REM SORI

1310 M7.-0: SL$=H I *: FOR I =LL7.T0UL7.: IFLB* (I > = " " THEN 1340

1320 IFLB* (I) < SL$THENSL$=LB* (1) : M7.= I +1

1330 UL7.= I

1340 NEXTI: IFF7.<MXTHEN1360

1350 F7.=0: IFPM=OTHENPRINT#PF

1360 IFM7.=0THEN1400

1370 0NPMG0T01390

105

The Machine Language Book of the Commodore 64

1380 PRINT#PF,SL$" "HE* (M7.-1 > " ";

1390 LBS (M7.-1) = " " : F7.=F7.+1: GOTO 1310

1400 REM

1410 IFPG=4THENPRINT#PF,CHR$ <12)

1420 CLOSEPFrEND

1500 P0KE0F+AD+2,0:REM NOP FILLER

1510 POKEOF+AD+1,0

1520 A=0: PR*=PR*+NP* (A7.) : RETURN

1600 IFLEFTS(LN*,1)="."THENI=-1:RETURN

1610 IFMID*<LN*,4,1><>" " THEN I =NN7.+1: RETURN

1620 MN$=LEFT$<LN*,3>:REM LABEL=MNEMONIC?

1630 F0RI=0T0NN7.: IFMN*< >MN* < I) THENNEXT

1640 RETURN

2000 GET#B,A*,B*:IFA*+B*=""THEN2290:REM LEFT ADDRESS

2010 GET#8,Z1$,Z2*

2020 ZN=ASC(Zl*n-CHR*<0)) +HI*ASC <Z2*+CHR$ (O) >

2030 ZN*=RIGHT*(" "+STR$<ZN),5)+" "

2040 G0SUB2300: IFFF7.THENRETURN

2050 LN*=" ": X$=" " : Y$=" " : RM*=" " : X7.=0

2060 FORI=0TO3:FL*<I>=" ":NEXTI:IFZ$="*"THEN2190

2070 IFZ*=";"THEN2280

2080 REM LABEL NAME

2090 IFZ$=" "0RFF7.THENLN$=LEFT*<LN$+" " ,5) :G0T02120

2100 LN*=LN$+Z$: IFLEN (LN$) =6THENX7.= 1: FL$ (0) ="L"

2110 GOSUB2300:GOT02090

2120 G0SUB1600: IFIONN7.THENX$=LN$: LN$=" " : G0T02200

2130 X7.=ASC<LN*> : IFX7.<650RX7.>90THENFL* (0) ="S"

2140 REM OPERATION

2150 G0SUB2300: IFFF7.THENRETURN

2160 IFZ*<>" "THEN2190

2170 60T02150

2180 G0SUB2300: I FFF7.THENRETURN

2190 IFZ*<>" "THENX*=X*+Z$:G0T02180

2200 IFFF7.THENRETURN

2210 IFZ*=";"THEN2280

2220 IFZ$<>" "THEN2260:REM OPERAND

2230 G0SUB2300: IFFF7.THENRETURN

2240 G0T02200

2250 G0SUB2300: IFFF7.THENRETURN

2260 IFZ*<>" "THENY*=Y*+Z*:G0T02250

2270 G0SUB2300: IFFF7.THENRETURN: REM COMMENT

2280 RM$=RM$+Z$:G0T02270

2290 X$=".EN":RM*=1IEND ASSUMED" : LN*=" " : Y*=" " : ZN*=" ": RETURN

2300 GET#8, Z*: FF7.=Z*=" " : RETURN

2400 REM DETERMINE ADDRESSING MODE

2410 IFY$=""THENT7.=8: RETURN: REM IMPLICIT

2420 YA$=Y*:IFLEFT*(YA*,1)="("THENYA$=MID*(YA*,2 >

2430 IFRIGHT*(VA*,1)=")"THENYA*=LEFT*(YA$,LEN(YA$ >-1)

2440 I FR IGHT* < YA* , 3 >=="), Y " THENYA*-LEFT* < YA*, LEN (YA*) -3)

2450 I FR I GHT$ (YA* , 2) « " , Y " ORRIGHT* < YA$, 2) = " , X ** THENYA$=LEFT* (YA*, LEN

2460 Z*=Y*:K*=LEFT*<Y*,1>

2470 IFZ$="A"THENT7.=0: RETURN: REM ACCUMULATOR

2480 I FK*= " # " THENT7.= 1: RETURN: REM IMMEDI ATE

2490 IFK*«"("THEN2600:REM INDIRECT

2500 ZP«K*«"*":REM ZERO PAGE

2510 Z*=MID*(Y*,2+ZP)

2520 IFLEN(Z*)<2THEN2550

2530 K*=M ID* < 7.* , LEN < Z* > -1 , 1 >

106

The Machine Language Book of the Commodore 64

2540 IFK*=",llTHEN2570:REM INDEXED

2550 T7.=5

2560 T"/.=T"/.+3*ZP: RETURN: REM ABSOLUTE OR ZERO-PAGE

2570 K*=R I GHT* (Z *, 1) : I FK*= " X " THENT7.=6: G0T02560

2580 I FK*= " Y " THENT7.=7: G0T02560

2590 T7.=-l: RETURN: REM SYNTAX ERROR

2600 K*=RIGHT* (Z*,1):IFK*=">"THEN2630

2610 IFRIGHT*(Z*,2K>",Y"THEN2590

2620 T7.= ll: RETURN

2630 IFMID* < Z*, LEN (Z*) -2, 2) =" , X "THENT'/.= 1O: RETURN

2640 T7.= l2: RETURN

2700 IFX*="="THEN2730:REM PSEUDO-OPS PASS i

2710 IFLEFT*(X*,2)="*="THEN2780

2715 IFLEFT*(X*,3) = ".BY"THENA7.= 1:!RETURN

2720 A7.=0: RETURN

2730 A7.=0: 1FY*="*"THENRETURN

2740 A7.=ASC (LEFT* (LN* , 1) > : IFA"/-< 650RA7. >90THENRETURN

2750 A*=LEFT*(Y*,1) : IFA*O"*"AND (A*< "0110RA*>"9") THENRETURN

2760 A*=Y*:G0SUB3100: IFF7.THENML* (HC7.) =FL*(2) : RETURN

2770 G0SUB3240: HE* (HC7. > =R IGHT* (" 0000 " +A*, 4 > : RETURN

2780 A7.=0: Y1 *=LEFT* (Y* , 1 > : IFY1 *= " * " ORY1 * > " / " ANDY 1 *< " : " THEN2800

2790 RETURN

2800 A*=Y*: G0SUB3100: I FF7.THENRETURN

2810 HA=A: G0SUB3240: X7.=ASC (LEFT* (LN*+CHR* (O) , 1)) : IFX"/->64ANDX7-<91

THENHE*(HC7.)=A*

2820 RETURN

2900 IFXX*=n="THEN2940:REM PSEUDO-OPS PASS 2

2910 IFLEFT*<X$,2)='l*=llTHEN2990

2915 IFLEFT*(X*,3)=".BYIITHEN2991

2920 FL*(1)=MS"

2930 A"/-=0: F7.= 1: PR*= " " : RETURN

2940 A7.=0

2950 A*=LEFT*<Y*,i>

2960 IFA*< >"*IIANDA*< >"*" AND (A*< ll0"0RA*>ll9") THENFL* (2> ="S" : G0T02930

2970 SL*=LN*:F7.=0:G0SUB4500: IFF7.THENFL* <O)=FL* (2) :FL*(2>=" " : G0T02930

2980 PR*=HE*+" "-.RETURN

2990 A7.=0:YZ*=LEFT*(Y*,l) : IFYZ*="*I1ORYZ*>I1/"ANDYZ*<11: "THEN3010

2991 YZ*=LEFT* (Y*, 1 > : LH7.=YZ*=" >"ORYZ*=II<." : YA*=MID* < Y* , 1-LH7.)

2992 YZ*=LEFT*<YA*,1> : IFYZ*="*"ORYZ*>II/IIANDYZ*<11: "THENHE*=YA*: G0T02994

2993 SL*=YA*: F7.=0: G0SUB4500: HE*= " * " +HE*: I FF7.THENFL* (0) =Fll* < 2 >

:FL*(2)=" "

2994 A*=HE*: G0SUB3100: IFA>L0ANDLH7.=0THENA=0: FL* (1) ="0"

2995 IFLEFT* <Y*,1)=">"THENA=INT(A/HI)

2996 IFLEFT*(Y*,1> »"<"THENA=A-INT <A/HI)*HI

2998 POKEAD, A: A7.= 1: G0SUB3240: PR*=PR*+R 1GHT* < " 00 " +A*, 2 > + " "

:REfURN
3000 FL* (2) = " S " : F7.= 1: G0T03030

3010 A*=Y*:G0SUB3100: IFF7.THEN3030

3020 AD=A:G0SUB3240:PR*=A*+" "

3030 PR*=PR*+(I ": RETURN

3100 REM CONVERT HEX -> DEC A* -> A

3110 Z*=LEFT* (A*, 1) : IFZ*=II*1ITHENA*=RIGHT* < A*, LEN (A*) -1) : G0T03150

3120 IFZ*<II0ll0RZ*>"9llTHENFL* (2) ="S" : F7.= l: RETURN

3130 A=VAL (A*) : IFA >655350RA< OTHENFL* (2) = " 0 " : F7.= 1

3140 RETURN

3150 A=0: L7.=LEN (A*) : IFL7. >4THENF7,= 1: FL* (2) = " L " : RETURN

3200 FORI = 1TOL7.:AA7.=ASC(MID*(A*,I))-48

3210 IFAA7.<00RAA7->9THENIFAA%<170RAA7.>22THENF7.= l: FL* (2) ="S" : RETURN

3220 IFAA7.>9THENAA7.=AA7.-7

3230 A=A+AA7.*16t (L7.-I) : NEXT: RETURN

3240 AH7.=A/HI: AL7-=A-AH7.*HI: A*=A* (AH7./16) +A* (AH7.AND15) +A* (AL7./ 16)

+A*(AL7.AND15)

107

The Machine Language Book of the Commodore 64

3250 RETURN

4000 DIMLB*(349),HE*(349),ML*(349):HA=AD:REM CONSTRUCT ADDRESS LIST

4010 F0RI=0T0349:LB*(I)=" ":HE*(I)="0000":ML*(I)= " ":NEXT

4020 OP*=DD*+":"+SN*+"- SRC"

4030 0PEN8,DG,0, OP*

4040 GET#8, A*, A*: LL7.=349

4050 IFST< :: 0THENCL0SE8: END

4060 G0SUB2000:PRINTCHR*(145),ZN*:IFLN*=""ORLEFT*(LN*,1)=" "THEN4210

4070 X7.=ASC (LEFT* (LN*, 1)) : IFX7.<650RX7->90THEN4210

4080 G0SUB4100:G0T04130

4090 LN*=LEFT*(LN*+" ",5):REM GENERATE HASH CODE

4100 HC=0:F0RI=lT05

41 10 HC7.~ASC(MID*(LN*, 1,1)) : HC=HC+ (HC7./ 10-INT (HC7./ 10) >*10t (6-1) :NEXTI

4120 HC7.= (HC/307-INT (HC/307) > *300: RETURN

4130 A=HA:G0SUB3240

4140 IFLB*(HC7.)O" "THEN4180

4150 LB* (HC7.) =LN*: HE* (HC7.) =A*: IFHC7. >UL7.THENUL7.=HC7.

4160 I FHC7.< LL7.THENLL7.=HC7.

4170 G0T04210

4180 IFLB* (HC7.) =LN*THENML* (HC7.)="M": G0T04210

4190 HC7.=HC7.+1: I FHC7.< 350THEN4140

4200 PRINT"SYMBOL TABLE FULL":CL0SE8:END

4210 IFX*=".ENI1THENCL0SE8:RETURN

4220 XX*=LEFT*(X*, 1) : IFXX*=". "0RXX*="*"0RXX*==" = "THENG0SUB2700: HA=HA+A7.

:G0l<»4<>60

4230 F7.=0: XX*=LEFT*(X*,3) : F0RJ=0T0NN7.: IFXX*OMN* (J) THENNEXT: G0T04270

4240 G0SUB2400

4250 I FT 7. (J , T7.) >=0THEN4280

4260 I FT7.=5ANDT7. (J , 9) >=0THENT7.=9: G0T04280

4270 F7.= l: HA=HA+1:G0T04060

4280 HA=HA+L7. (77.) : G0T04060

4500 REM ******** SEARCH FOR LABEL

4510 X7.=ASC (LEFT* (SL*, 1)) : IFX7.<650RX7.>90THENFL* (2) ="S" : F7.= l: HE*="OOOO"

: RE 11IRN

4520 IFLEN(SL*)>5THENFL*(2)="L"

4530 SV*=LN*:LN*=SL*:G0SUB4090:SL*=LN*:LN*=SV*

4540 I FLB* (HC7.) = " " 0RHC7. >UL7.THENFL* (2) = " U " : F7.= 1: HE*= " 0000 " : RETURN

4550 I FLB* (HC7. > < >SL*THEN4580

4560 HE*=HE* (HC7. > : IFML* (HC7.) < > " " THENFL* (2) =ML* (HC7.)

4570 RETURN

4580 HC7.=HC7.+ l:G0T04540

4590 Y1*="":Y2*="":I = 1:REM DIVIDE Y* INTO Y1 * AND Y2*

4600 IFM1D* (Y* , I , 1) < > " , " THENY1 *==Y1 *+M ID* (Y*, 1 , 1)

4610 IFI >LEN (Y*) THENF7.= 1: RETURN

4620 IFMID*(Y*,I,1)< >","THEN1 = 1 + 1:G0T04600

4630 I = I + 1:IFI >LEN (Y*) THENF'/.= 1: RETURN

4640 Y2*^=Y2*+M ID* (Y* , I , 1) : IFI =LEN (Y*) THENF7.=0: RETURN
4650 1=1+1:G0T04640

5000 READNNX:HI=256:L0=255

5010 DIM A* (15), MN* (HN7.) , T 7. (MN7., 12) , L.7. (12), FL* (3) , NP* (T')

5020 FOR I ==0T015: READA* (I) : NE X T

5030 NP*(1)="00 ":NP*(2)="00 00 ":NP*(3)="00 OO OO

5040 FOR I =0T012: READL7. (I) : NEXT

5050 F0RJ=0T0NN7.: READMN* (J) : FORJ J-0T012: READA*: IFA*="-1 "THENA=-1
:BO1U5O/O

5060 A=0: FORI = 1TO2: X=ASC (RIGHT* (A*, I)) -48s X = X+ (X >V) * / : A==A+X*l61
(T-.1):NEXI

5070 T7. (J , J J) =A: NEXT: NEXT: RETURN

6000 DATA 55 :REM NUMBER OF MNEMONICS

6010 DATA 0,1,2,3,4,5,6,7,S,9,A,B,C,D,E,F

6020 DATA 1,2,2,2,2,3,3,3,1,2,2,2,3

7000 DATA ADC,-1,69,65,75,-i ,6D,7D,79,™1,-1,61,71,-1

108

The Machine Language Book of the Commodore 64

7010

7020

7030

7040

7050

7060

7070

7080

7090

7100

7110

7120

7130

7140

7150

7160

7170

7180

7190

7200

7210

7220

7230

7240

7250

7260

7270

7280

7290

7300

7310

7320

7330

7340

7350

7360

7370

7380

7390

7400

7410

7420

7430

7440

7450

7460

7470

7480

7490

7500

7510

7520

7530

7540

7550

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

AND

ASL

BCC

BCS

BFD

BMT

BTT

BNF

BPL

BRK

BVC

BVS

CLC

r\ n

CLI

n v

CMP

CPX

tpy

DFr

DFX

DEY

EOR

INC

TMX

I NY

JMP

JSR

LDA

LDX

LDY

LSR

NDP

ORA

PHA

PHP

PI A

PI P

ROL

ROR

RTT

RTS

RBR

SFP

SFD

SEI

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

_ ■L,29,25,35

,0A,-l,06,16
_

_

_

_

-

L — 1

L —1

L —1

L —1

L —1
l _<

■ , — •

_

_

_

_

-

1- , 1 »~
,-1,-1,-1,-1

, 1, 1 , 1, 1

,-l,C9,C5,D5

,-1,EO,E4,-1

—1 CO C4 —1

-1 -1 C6 D6

,-1,49,45,55

,-1,-1,E6,F6

, 1, 1,-1, 1

, 1 , 1 , 1, 1
,-l,A9,A5,B5

,-1,A2,A6,-1

,-l,A0,A4,B4

,4A,-

,-l,Oc

,-!,-

,2A,-

,6A,-

L,46,56

7,05,15

L,26,36

1,66,76

,-l,E9,E5,F5

1111

,-1,-1,85,95

,-1,-1,86,-1

,-1,-1,84,94

,-1,-1,-1,-1

,-1,-1,-1,-1

,-1,-1,-1,-1

,-1,-1,-1,-1

,-1,-1,-1,-1

i — 1," 1 ,-1

? —; ,2D,3D,39,-1,-1,21 ,31

,-l,OE,IE,-1,-1,-1,-1,-1

,-1,-1,-1,-1,-1,30,-1,-1

,-1,-1,-1,-1,-1,10,-1,-1

, 1,-1,-1, 1,UU, 1,-1, 1

,-i, -l,-l,-l,-l',50, -1,-1

_ j

_

_

_

_

_

,-

1 1 11R 1—1 1

L , 1 , 1 , 1 , vJhJ, 1 , 1 , 1

L,CD,DD,D9,-1,-1,C1,D1

L,EC,-1,-1,-1,-1,-1,-1

L,4D,5D,59,-1,-1,41,51

L,EE,FE,-1,-1,-1,-1,-1

, 1,20, 1, 1, 1, 1, 1, 1

,-l,AD,BD,B9,-l,-l,Al,Bl

,B6,AE,-1,BE,-1,-1,-1,-1

,-1,AC,BC,-1,-1,-1,-1,-1

,-l,4E,5E,-1,-1,-1,-1,-1

,-1,OD,1D,19,-1,-1,01,11

,-1,-1,-1,-1,68,-1,-1,-1

,-l,2E,3E,-1,-1,-1,-1,-1

,-l,6E,7E,-1,-1,-1,-1,-1

1 1 1 — 1 7R 1

,-l,8D,9D,99,-1,-1,8

,96,BE,-1,-1,-1,-1,-1

,-l,8C,-l,-1,-1,-1,-3

,-1,-1,-1,-1,AA,-1,-1

,-1,-1,-1,-1,A8,-1,-

,-l,-l,-l,~l,BA,-l,-J

,-1,-1,-1,-1,8A,-1,-

,-1,-1,-1,-1,9A,-1,-J

1,-1,-1,-1,98,-1,-

L,91

L ,-1

1,-1

. ,-1

L , -1

L,™1

L ,-1

1,-1

i —1

,-1
— 1

,-1

,-1
, 1
,-i

_ i

4

— 1

,-1
1-1
~ 1

1-1

,"1

4

1-1

1-1

1-1

_. 1

,-1

1-1

1 —1
_ 1

,-1

-1
■1

,-1

1-1
,-1

, -1

,-"1

1-1

,-1

,-1

1-1

109

The Machine Language Book of the Commodore 64

Description of the 6510 assembler and the important variables.

100 - 190 Display title, read source file name into $SN,

prompt for assembly listing. Variable DG is set

to the device number for listing depending on

the answer. The variable PM determines if the

listing is wanted or not. Call routine to

initialize the variables with GOSUB 5000.

200 - 460 Main loop of the program. Line 210 performs pass

1 as a subroutine (GOSUB 4000). Source program

file opened for reading from disk. If listing is

not required, display only the line number $ZN

(line 250). Variable for printer output, PR$, is

constructed. Line 320 checks for legal instruc
tions. Set error flag if illegal instruction and

place BRK instruction at that location. Line 350

determines addressing mode (GOSUB 2400).

Determine direction of branch for relative

addressing mode. Call subroutine from line 360

to build string for printing the listing

(depending on addressing mode and length of

instruction). Write generated code to memory

from line 370. Increment program counter in line

380. Print listing in lines 400 thru 460. If

error is found, increment error counter in line

420. Display complete assembler source statement

in line 450.

500 - 520 Handle one-byte instructions. Variable A% is set

to the number of bytes and the instruction code

is determined by using T%. A negative value

indicates that this instruction cannot use this

addressing mode. In this case, branch to 1510,

to insert a BRK instruction (zero) instead.

Otherwise, convert the opcode to hex and place

in the print string.

600 - 740 Handle two-byte instructions. Determine opcode

in line 610. Place opcode in print string in

line 620. Check for immediate addressing, oper

ators < and > and zero-page addressing (denoted

by "*"). Determine if operand is number (hex or

decimal) in line 660. If not, get value of the

label in line 670 (GOSUB 4500). Qonvert value of

operand to hex. Modify the value according to

the operators < and > in line 700 and 710. Range

check for value greater than 255 in line 720.

Insert value in memory and add to the print

string.

800 - 890 Handle three-byte instructions similar to two-

byte instructions above. Calculate offset and

check for legal address range in line 970. If

110

The Machine Language Book of the Commodore 64

illegal, display "R" (range) error and set

offset to zero. Convert negative values to two's

complement in line 980. Insert the value in
memory and add to print string.

1000 - 1420 Execution is transferred here when the assembly

is done. Display last line of assembly. Prompt

user to save generated code to disk. If yes,

setup filename, starting and ending addresses

call operating system SAVE routine with SYS.

Display range and length of the generated code.

Prompt for symbol table display. Sort into

alphabetical sequence in lines 1200-1400.

The following are the subroutines which are called from the

main routine and perform such operations as number
conversion.

1500 - 1520 Output one or two zero bytes if an error was

detected during the assembly.

1600 - 1640 Determine if first field is a mnemonic for an

instruction or a label. If it is an instruction,

assign to variable I the index of that

instruction in the assembler's internal tables.

2000 - 2300 Read a source program line from disk and

separate into line number, label, instruction

mnemonic, operand, and comments. The routine at

2300 reads one byte from disk into the variable

Z$. Flag FF% is set if the byte is zero (end-of-

line marker). The first two bytes, which contain

the link address, are not used. If both are

zero, however, the end of the program has been

reached and M.EN" in indicated. Otherwise, the

line number is obtained from the next two bytes.

Find next field by searching for first blank or

the end-of-line. If a semicolon is found, the

text following is assigned to the variable as

comments. Otherwise, the variable ZN$ contains

the line number, LN$ contains the label name, X$

contains the instruction mnemonic, Y$ contains

the operands, and; RM$ contains the comments.

2400 - 2460 Determines the addressing mode of an

instruction. Check for characters "(", ")"f ","

and "X" and "Y". Immediate addressing mode is

recognized by "#", and zero-page addressing by

»*" (variable ZP, line 2510). Addressing mode is

indicated by variable T% as value between zero

and twelve. A negative value indicates an

illegal addressing mode.

Ill

The Machine Language Book of the Commodore 64

2700 - 2820 Handles the pseudo-instructions " = ", " = *", and

".BY". Called during pass 1 and is used for such

things as label definition.

2900 - 2998 Handles the same instructions as the previous

routine, but for pass 2. This routine places the

codes for ".BY" commands in memory.

3000 - 3030 Calls the following routines for number conver

sion and is used to initialize the print string

with the address of the program counter.

3100 - 3230 Convert a hex number in A$ to a decimal number

in A.

3240 - 3250 Convert a decimal number in A to a hex number in

A$. AL% and AH% contain the low and high bytes,

respectively.

4000 - 4280 Perform pass 1 of the assembly. Performs label

searching and assigning their values. Also dis

plays the line numbers (line 4060). A hash-code

procedure is used for symbol table to speed

searching using variable LB$(). The corres

ponding hex code is placed in HE$(). The length

of each instruction is determined from the

addressing mode, so that the labels can be

assigned the correct values. Check for duplicate

labels. Increment the program counter after the

determining the address mode T% using the field

L%() with the corresponding length of each

address mode.

4500 - 4650 Called during pass 2 to determine the value of

the label passed in SL$. If the label is not

found, an error flag is set, otherwise the hex

value is returned in HE$.

5000 - 5070 Initialize all variables from the following DATA

statements.

6000 - 7550 DATA statements for the converting from decimal

to hex, instruction lengths for different

addressing modes, instruction mnemonics and

corresponding operation codes and allowable

addressing modes.

112

The Machine Language Book of the Commodore 64

The following describe the usage of the major variables of

the assembler,

SN$ Contains the name of the source program

(without suffix ".SRC"). The machine code

produced is saved under the same name, with the

suffix ".OBJ".

DD$ Contains the drive number.

PG Contains device number of the output device for

the listing; 3 = screen, 4 = printer.

PM Flag for ignoring printer output (=1).

A actual address value

AD immediate program counter during the assembly

ZN$ line number being processed

LN$ label name

X$ instruction mnemonic

Y$ operand

RM$ comments

T% address mode (zero to twelve)

OF offset for storage of generated code (0=not used)

A% length of instruction

A$ hex representation of the actual address A

SL$ label to search for. Must contain the name of

the label being searched for when calling 4500.

HE$ hex value of the label

LO constant 255

HI constant 256

DF address offset (difference) for relative add

ressing

BS% error counter

MX number of labels per line for output of symbol

table

HI$ "greater" label name for sorting

113

The Machine Language Book of the Commodore 64

PR$ string for output of a print line in the listing

MN$ mnemonic

Z$ character from disk

NN% number of mnemonics (op codes)

X% ASCII code

ZP flag for zero-page addressing

HA value of a label (during pass 1)

F%, FF% error flags

HC, HC% hash code

FL$(3) error codes

LB$(349) table of labels

HE$(349) table of corresponding values for labels (in hex

code)

T%(55,12) table of opcodes and address modes. The first

index is the instruction word, the second index

is the addressing mode.

MN$(55) table of instruction words in alphabetical

order.

114

The Machine Language Book of the Commodore 64

6. A Single-Step Simulator for the 6510

If you are still unclear as to how certain machine language

instructions work, here's a tool that lets you observe the

see the results of each instruction right on the screen. The

tool is called a SIMULATOR. As the name implies, it

simulates the operation of the 6510 microprocessor. When you

RUN the SIMULATOR, it displays the actions and results of an

instruction as if that instruction were really being

executed.

The SIMULATOR displays the following screen:

PC AC XR YR SR SP NV-BDIZC

0000 00 00 00 20 FF 00100000

Here are the abbreviation used in the display:

PC

AC

XR

YR

SR

SP

N

V

B

D

I

Z

C

program counter

accumulator

X register

Y register

status register

stack pointer

negative flag

overflow flag

break flag

decimal flag

interrupt flag

zero flag

carry flag

Beneath the abbreviations are the contents of each register.

You can change the contents of any register or flag from the

115

The Machine Language Book of the Commodore 64

keyboard. To change the contents, press the appropriate

letter as outlined below. If you press the letter of a flag,

then that flag in "inverted". If you press the letter of a

register, the screen prompts you for the change. Key in tie

new value using a legal hexadecimal value and press the

<RETURN> key. The new value replaces the old and the display

is updated with the new contents. Below is a description of

the keys and their respective contents:

P Displays the current contents of the program counter.

After changing it, the new value is displayed and the

instruction located at this new address is disassembled

and also displayed .

A The contents of the accumulator are displayed. You can

alter the contents by keying in the new value. After

pressing <RETURN>, the new value appears in the register

display.

X The contents of the X-register are displayed. You can

alter the contents by keying in the new value. After

pressing <RETURN>, the new value appears in the register

display.

Y The contents of the Y-register are displayed. You can

alter the contents by keying in the new value. After

pressing <RETURN>, the new value appears in the register

display.

S The contents of the stack pointer are displayed. You can

alter the contents by keying in the new value. After

pressing <RETURN>, the new value of the stack pointer

appears in the register display.

The status register SR cannot be changed directly. Instead,

you have to change the individual flags which comprise the

status register. If a flag is changed, the value of the

116

The Machine Language Book of the Commodore 64

status register in the display is automatically changed as

well.

N By pressing N, the value of the Negative flag is

inverted: 1 becomes 0 and vice versa. At the same time, the

contents of the status register are changed

correspondingly, as already mentioned.

V By pressing V, the value of the overflow flag is inverted

as above.

B By pressing B, the value of the Break flag is inverted as

above.

D By pressing D, the value of the Decimal flag is inverted

as above.

I By pressing I, the value of the Interrupt flag is

inverted as above.

Z By pressing Z, the value of the Zero flag is inverted as

above.

C By pressing C, the value of the Carry flag is inverted as

above.

The most important function of the simulator is performed by

pressing the space bar. By pressing the space barf the

machine language instruction pointed to by the program

counter is executed. As the name simulator implies, this

instruction is not directly executed by the processor.

Instead it is simulated by the program. The register

contents and flags are altered just as they would be if the

microprocessor had executed the instruction. After pressing

the space bar, the new contents of the registers and flags

are displayed; the next instruction to be executed is

117

The Machine Language Book of the Commodore 64

disassembled and displayed; the new value of the program

counter is displayed.

Below is an example, simulating the execution of a routine

contained in the operating system. First set the program

counter to $A81D by pressing P and entering A81D as the new

contents of the program counter. The following is displayed:

PC AC XR YR SR SP NV-BDIZC

A81D 00 00 00 20 FF 00100000

A81D 38 SEC

Press the space bar to simulate the execution of this

instruction. The result appears below:

PC AC XR YR SR SP NV-BDIZC

A81E 00 00 00 21 FF 00100001

A81E A5 2B LDA $2B

After the instruction is executed, the carry flag is set.

The value of the status register is automatically changed to

$21. The program counter is incremented by one to $A81E.

This location contains an LDA instruction. Press the space

bar to execute this instruction. Here's what you'll see on

the screen:

118

The Machine Language Book of the Commodore 64

PC AC XR YR SR SP NV-BDIZC

A820 01 00 00 21 FF 00010001

A820 E9 01 SBC #$01

The accumulator has been loaded with the contents of memory

location $2B, which contains the value 1. Notice that the N

and Z flags remain clear because the value loaded was

neither zero nor negative. The program counter now stands at

$A820, two bytes further. The instruction at this location

is SBC #$01 - subtract $01 from the contents of the

accumulator. Press the space bar again to see the simulated

results of the SBC instruction:

PC AC XR YR SR SP NV-BVIZC

A822 00 00 00 23 FF 00100011

A822 A4 2C LDY $2C

After the value $01 is subtracted from the contents of the

the accumulator (also l)f the result appears in the

accumulator. Something happened to the flags. The zero flag

is set, indicating that the result of the operation of is

zero. The carry flag is also set. This tells us that

underflow did not occur during the subtraction. The next

instruction at address $A822 is LDY $2C. Press the space bar

to get the following display:

PC AC XR YR SR SP NV-BDIZC

A824 00 00 08 21 FF 00100001

A824 B0 01 BCS $A827

119

The Machine Language Book of the Commodore 64

The Y-register contains $08 and the zero flag is cleared.

The instruction at address $A824 is a conditional branch.

Can you tell beforehand if this branch will be executed? The

branch will take place if the carry flag is set. Since the

carry flag is set, the branch will take place. Confirm this

by pressing the space bar:

PC AC XR YR SR SP NV-BDIZC

A827 00 00 08 21 FF 00100001

A827 85 41 STA $41

The program counter is now pointing to $A827, not $A826 has

the carry flag been clear. Notice that the flags are not

changed by the branch instruction. The next instruction

stores the contents of the accumulator in memory location

$41. Press the space bar again:

PC AC XR YR SR SP NV-BDIZC

A829 00 00 08 21 FF 00100001

A829 84 42 STY $42

The STA instruction does not change any of the flags. The

next instruction, STY $42, also has no affect on the flags.

Press the space bar:

PC AC XR YR SR SP NV-BDIZC

A82B 00 00 08 21 FF 00100001

A8 2B 60 RTS

The next instruction is an RTS. You can stop the simulator

120

The Machine Language Book of the Commodore 64

here. The great advantage of a simulator is that you can see

exactly what each instruction does at your own pace. You can

change the contents of the registers and flags at your

discretion before the execution of each instruction to see

how the processor reacts. You can also set the program

counter back to the same instruction after its execution and

re_execute it again with different registers or flag values.

It becomes a great learning tool.

A simulator also allows you to advance the program counter

to the next instruction without executing the previous one.

You can do this by pressing the "cursor down" key. For

example, if you come to a instruction such as STA or INC

which overwrites important operating system areas of memory,

you risk crashing your computer.

For this reason, instructions affecting memory are normally

not executed. If these types of instructions are necessary

to test your program correctly, (for example if your program

depends on the contents of a specific memory location), then

you can specify that the program actually execute such

commands. To do this, press the E key. The prompt ACTUAL

SIMULATION? Y appears on the screen. If you press <RETURN>,

then all instructions which write to memory are actually

executed. If you respond with N(o) instead of Y(es), you can

turn this option off.

The simulator also allows you to view and alter the contents

121

The Machine Language Book of the Commodore 64

of memory location. To do this, press the M key. The prompt

ADDRESS ?**** appears on the screen. Enter the desired

memory location and press <RETURN>. The current contents of

that location are displayed on the screen. You can press

<RETURN> to leave the contents unaltered, or key in a new

value to change the contents. Changes are accepted only if

ACTUAL SIMULATION was previously selected with E.

The next example describes the operation of the stack. The

BRK instruction is used to illustrate the stack operation.

Start the simulator by typing RUN. Enter E to select actual

simulation mode, and set the program counter to $0002. Next

change the contents of memory location $0002 to $00. $00 is

the instruction code for the BRK instruction. Everytime a

BRK instruction is executed, the simulator's B flag is set.

The following appears on the screen:

PC AC XR YR SR SP NV-BDIZC

0002 00 00 00 20 FF 00100000

0002 00 BRK

To better illustrate the stack operations, place unique

values into the accumulator, X and Y registers. You can do

this by press the A, X and Y keys and typing in new values

for the coresponding registers. We have altered the contents

of the registers to the values displayed on the next page:

122

The Machine Language Book of the Commodore 64

PC AC XR YR SR SP NV-BDIZC

0002 22 44 88 20 FF 00100000

0002 00 BRK

If there is no BRK instruction at address $0002, then press

M and enter the address $0002. The contents of memory

location 2 appears. Alter the contents to $00 (the operation

code for the BRK instruction). Now the BRK instruction is

displayed on the screen as shown above. Press the space bar

and observe the display:

PC AC XR YR SR SP NV-BDIZC

FF48 22 44 88 34 FC 00110100

FF48 48 PHA

When a BRK instruction is encountered, the processor takes

several actions:

1) The B and I flags are set.

2) The contents of the program counter (two bytes) and

the status register are saved onto the stack.

3) The stack pointer is decremented by three, in this

case from $FF to $FC.

4) The program counter is loaded with the contents of

addresses $FFFE and $FFFF (which contains $FF48).

$FFEE and $FFFF contain the BRK vector which is the

address of a routine which always handles a BRK

interrupt.

The instruction at this location is PHA. This instruction

places the contents of the accumulator onto the stack. Press

the space bar again. You will see this:

123

The Machine Language Book of the Commodore 64

PC AC XR YR SR SP NV-BDIZC

FF49 22 44 88 34 FB 00110100

FF49 8A TXA

The contents of the accumulator is placed on the stack and

the stack pointer is automatitcally decremented. Next the

contents of the X-register is copied to the accumulator with

the TXA instruction. Press the space bar again.

PC AC XR YR SR SP NV-BDIZC

FF4A 44 44 88 34 FB 00110100

FF4A 48 PHA

The flags are not changed because the value in the X-

register is neither zero nor negative. The PHA instruction

pushes the contents of the accumulator on the stack again.

Press the space bar once more.

PC

FF4B

FF4B 98

AC

44

XR

44

YR

88

SR

34

TYA

SP

FA

NV-BDIZC

00110100

Notice that stack pointer is again decremented. Now the

contents of the Y-register is placed in the accumulator with

the TYA instruction. This time, however, the N flag is set

because the value in the Y register is negative (greater

than $7F). This is displayed:

PC AC XR YR SR SP NV-BDIZC

FF4C 88 44 88 B4 FA 10110100

FF4C 48 PHA

124

The Machine Language Book of the Commodore 64

The PHA instruction pushes the contents of the accumulator

onto the stack again. Now here's a new instruction.

PC AC XR YR SR SP NV-BDIZC

FF4D 88 44 88 B4 F9 10110100

FF4D BA TSX

The TSX instruction transfers the contents of the status

register to the X-register.

Notice that you have saved all of the registers onto the

stack in this order: Program Counter and Status register

(saved by BRK), Accumulator, X-register and Y-register.

Now let's simulate the instructions at a different part of

the operating system. These instructions restore the

registers that we just saved so we can further see the

operation of the stack.

Before simulating these instructions, set the register

values to zero. Then you can observe as the values change to

see how the register contents are restored. You can do this

by altering the Ar X and Y registers to zero.

Next set the program counter to $EA81. The display should

look like this:

PC AC XR YR SR SP NV-BDIZC

EA81 00 00 00 B4 F9 10110100

EA81 68 PLA

125

The Machine Language Book of the Commodore 64

The machine language routine at $EA81 restores all of the

registers and continues execution at the point just before

the BRK interrupt occurred.

When the PLA instruction is executed, the data at the top of

the stack is placed into the accumulator. The data is $88,

which is the original contents of the Y-register above.

PC AC XR YR SR SP NV-BDIZC

EA82 88 00 00 B4 FA 10110100

EA82 A8 TAY

This instruction copies the value in the accumulator to the

Y-register:

PC AC XR YR SR SP NV-BDIZC

EA83 88 00 88 B4 FA 10110100

EA8 3 68 PLA

Now pull the next value from the stack into the accumulator

with the PLA instruction and transfer it to the X-register.

Press the space bar to see the results:

PC AC XR YR SR SP NV-BDIZC

EA84 44 00 88 34 FB 00110100

EA84 AA TAX

Notice that each time a value is taken off the stack, the

stack pointer is incremented by one. Press the space bar

126

The Machine Language Book of the Commodore 64

again:

PC AC XR YR SR SP NV-BDIZC

EA85 44 44 88 34 FB 00110100

EA85 68 PLA

The original contents of the accumulator are now pulled from

the stack. Press the space bar. The next display looks like

this:

PC AC XR YR SR SP NV-BDIZC

EA86 22 44 88 34 FC 00110100

EA86 40 RTI

All of the registers have been restored and the stack

pointer again points to the value to which it pointed after

the BRK instruction. When using the stack, the important

thing to keep in mind is to pull the values off of the stack

in the reverse order that you pushed them on. The "last in—

first out" principle characterizes this procedure.

Now we can execute the RTI instruction which returns us to

the original interrupted program.

PC AC XR YR SR SP NV-BDIZC

0005 22 44 88 20 FF 00010000

0005 91 B3 STA ($B3),Y

The status register is returned to its original value and

127

The Machine Language Book of the Commodore 64

the program counter points to the instruction after the BRK

instruction. •

The simulator is the ideal tool for testing your programs.

Here you can see, step by step, if the processor really does

what you had intended. Debugging, always a tricky procedure,

is much easier with the simulator. Beginners, who are not be

acquainted with all of the addressing modes or who may have

problems understanding the flag settings, find the simulator

especially helpful. The listing of the simulator program

appears on the next pages. Following the listing is a short

description of the individual routines and the variables

used by the program.

128

The Machine Language Book of the Commodore 64

100 PRINT"CCLR><:WHT3<:C/DN3-i" 6510 SINGLE-STEP SIMULATOR"
110 PRINT" "

120 PRINT" r r r f«

130 PRINT" I PC I AC XR YR SR SP INV--BDIZCI"
140 PRINT" II I I-

150 PRINT" «- -J- J. <JV

160 FF=255: HI=256: UL=2 T 16: SC=2t15-1: SP=FF

170 DIM MN*(FF>,OP<FF),AD(FF),SP<FF),H*<15)

1B0 FORJ=0T015:READH$<J>:NEXT

190 FORJ=OTOFF:READMN*<J>,OP(J),AD<J):NEXP

200 REM DISPLAY REGISTERS

210 PRINT" CH0ME3- CC/DN3- CC/DN3- CC/DN3- CC/DN3- CC/DN3- CC/RT> -CC/RT > <C/RT> CC/R1 3-
CC/R13";

215 IFPO=ULTHENPC=PC-UL

220 A=PCi G0SUB2290: PRINT11 CC/RT3- CC/RT3- " 5

230 A=AC:G0SUB2320:PRINT"CC/RT3";

240 A=XR:G0SUB2320:PRINT"CC/RT3-";

250 A=YR:GOSUB2320:PRINT" CC/RT3-" ?

255 G0SUB900:REM SR

260 A«SR:G0SUB2320:PRINT"CC/RT3";

270 A=SP: G0SUB2320: PRINT" CC/RT3- CC/RT3- " ;

280 PRINTCHR*<48+N>;

290 PRINTCHR*(4B+V >;

300 PRINT"1";

310 PRINTCHR*(48+B > 5

320 PRINTCHR$<48+D>;

330 PRINTCHR*(48+I);

340 PRINTCHR*(48+Z)5

350 PRINTCHR*(48+C)

360 PRINT" CC/DN3<:C/DN> <!C/DN3- -CC/DN3 €C/DN> <C/LF> CC/LF1.

«C/LF> {C/ LF> {C/LF> {C/LF3- {C/LF3- {C/LF3- CC/LF3- CC/LF3- CC/LF> {C/LF3 <C/LF3 CC/LF3-
CC/LF3- CC/LF3- CC/LF 3- CC/LF3 " ;

400 GETTS:IFT*=""THEN400

405 IF T*=M "THEN1100:REM SIMULATION

410 I FT*= " P " THENPRI NT " PC " ; : A=PC: B0SUB2290: IIMPUT " i C /1. F 3 i C / LF > i C / LF >

CC/LF> CC/Lh.><:C/LF> " ; A*: G0SUB2380: PC=A
411 IFT*="P"THEN1000

420 IFT*="A"THENT*="AC":A=AC:G0SUB540:AC=A:8010200

430 IFT*="X"THENT$="XR":A=XR:G0SUB540:XR=A:G0T0200

440 IFT*="Y"THENT*="YR":A=YR:G0SUB540:YR=A:G0T0200

450 IFT$="S"THENT*="SP":A=SP:G0SUB540:SP=A:G0T0200

460 IFT*="NCTHENN=1-N:G0T0200

470 IFT*="'MpHENV:=1-V:eoT0200
480 IFT$=" Er#HENB=1-B:G0T0200
490 IFT*="D"THEND=1-D:G0T0200

500 IFT*="I"THEN1=1-1:G0T0200

510 IFT*="Z"THENZ=l-Z:G0T0200

520 IFT$="C"THENC=1-C:G0T0200

525 IFT*=="CC/DN3"THENS=P:E=P:PC=P:G0T01010

527 IFT**"M"THEN3000

528 IFT*="E"THEN3100

530 G0T0400

540 PRINTT*" " 5 : G0SUB2320: INPUT" CG/LF3- CC/LF> CC/LF > <C/LF> " ; A*

8 G0T02380

900 SR=N* 128+V*64+32+B*16+D*8+1 *4-<-Z*2+C: RETURN

910 N=SGN(SRAND128):V=SGN(SRAND64 >::B=SGN(SRAND16):D^SBN(SRAND8)

920 I=SGN (SRAND4) : Z=SGN (SRAND2) : C=SRANL>1: RE I URN

980 N=SGN(ACAND128):Z=1-SGN(AC):REM FLAGS

129

The Machine Language Book of the Commodore 64

990 POPC+l+L

1000 S»PCtE=PC

1010 PRINT" CH0ME3- <C/DN3- {C/DN3 CC/DN3- CC/DN3 CC/DN3- CC/DN3 <!C/DN> CC/DN* "

: B0SUB2040: B01 0200
1100 A»OP(PEEK(PC>):L=0:IFA=0THEN990

1110 0NAG0T01200,1210,1220,1230,1240,1250,1260,1270,1280,1290,1300,

1310,1320,133 0

1115 A=A-14

1120 0NAG0T01340,1350,1360,1370,1380,1390,1400,1410,1420,1430,1440,

1450,1460,1470
1125 A=A-14

1130 ONAGOTO1480,1490,1500,1510,1520,1530,1540,1550,1560,1570,1580,

1590,1600,1610
1135 A=A-14

1140 ONAGOTO1620,1630,1640,1650,1660,1670,1680,1690,1700,1710,1720,

1730,1740,1750

1150 G0T0200

1200 IFDTHEN1205:REM ADC

1201 GOSUB1900:V~1-SGN(ACAND128):AC=AC+OP+C:C=-(AC >FF)

1202 AC-ACANDFF:N=SGN(ACAND128):V=VANDN:G0T0980

1205 GOSUB1900:AC=VAL <H* <AC/16)+H*(ACAND15)):OP=VAL(H*(OP/16)+H*

(0PAND15))

1206 AC=AC+OP+C:C=-(AC >99):IFAC >99THENAC=AC-100

1207 A$=MID*<STR*<AC>,2):G0SUB2390:AC=A:G0T0980

1210 REM AND

1211 GOSUB1900:AC=ACANDOP:G0T0980

1220 GOSUB1900:A=0P*2:C=-(A>FF):A=AANDFF:GOSUB1850

1221 IFAD(PEEK(PC))=4THENAO=AC*2:C=-(AC >FF):AC=ACANDFF s G0T0980

1223 N=SGN<OPANDFF):Z=1-SGN(OP):G0T0990

1230 REM BCC

1240 REM BCS

1241 FL=C:GOTO1800

1250 REM BED

1251 FL=Z:GOTO1800

1260 REM BIT

1261 GOSUB1900:N=SGN(OPAND128):V=SGN(OPAND64> : Z = 1-SGN(OPANDAC)

:G0T0990

1270 REM BMI

1271 FL=N:GOTO1800

1280 REM BNE

1281 FL=1-Z:GOTO1800

1290 REM BPL

1300 REM BRK

1301 PC=PC+2:IFPC >=ULTHENPC=PC-2

1302 PH=INT (PC/HI) : PL=PC-PH*HI: SP (SP) =PH: SP=SP-1 ANDFF: SP (SF?T=PL
: S.P=SP-1ANDFF

1303 B=1:I = 1:G0SUB900:SP < SP)=SR:SP=SP~1ANDFF:PC=PEEK(65534)

■*HI»PEEK<65535>

1304 GOTO1000

1310 REM BVC

1311 FL=1-V:GOTO1800

1320 REM BVS

1321 FL=V:GOTO1800

1330 REM CLC

1331 0=0:GOTO1800

1340 REM CLD

1341 D=0:G0T0990

1350 REM CLI

1351 I=0:G0T0990

1360 REM CLV

1361 V=0:GOT0990

1370 REM CMP

130

The Machine Language Book of the Commodore 64

1371 GOSUB1900:A=AC-OP

1372 N=SGN(AAND128):Z=-<A=O):C=-(A>=0):GOT0990

1380 REM CPX

1381 GOSUB1900:A=XR-OP:GOTO1372

1390 REM CPY

1391 GOSUB1900:A=YR-OP:GOTO1372

1400 REM DEC

1401 GOSUB1900:A=OP-1ANDFF:GOSUB1850

1402 GOTO1442

1410 REM DEX

1411 XR=(XR-1)ANDFF:GOTO1452

1420 REM DEY

1421 YR=(YR-1)ANDFF:G0T01462

1430 REM EOR

1431 GOSUB1900:A=0:FORJ=7T00STEP-l: EX=2tJ:A=2*A-<(QPANDEX)O

(ACANDEX)>:NEX1
1432 AC=A:G0T0980

1440 REM INC

1441 GOSUB1900:A=OP+1ANDFF:GOSUB1850

1442 N=SGN(AAND128):Z=1-SGN(A):G0T0990

1450 REM INX

1451 XR=(XR+1)ANDFF

1452 Z=1-SGN(XR):N=SGN(XRAND128):G0T0990

1460 REM INY

1461 YR=(YR+1>ANDFF

1462 Z=1~SGN(YR):N=SGN(YRAND128):G0T0990

1470 REM JMP

1471 GOSUB1900:PC=AD:GOTO1000

1480 REM JSR

1481 A=PC+2:PH=INT(A/HI>:PL=A-PH*HI:SP <SP)=PH:SP=SP-1ANDFF:SP(SP)=PL

1482 PC=PEEK(PC+1)+PEEK < PC+2)*HI:GO TO1000

1490 REM LDA

1491 GOSUB1900:AC=OP:G0T0980

1500 REM LDX

1501 GOSUB1900:XR=OP:GOTO1452

1510 REM LDY

1511 GOSUB1900:YR=OP:GOTO1462

1520 REM LSR

1521 I FAD (PEEK (PC)) < MTHEN1524

1522 AC=AC/2

1523 O- <AC.< > I NT (AC)) : AO=ACANDFF: G0T0980

1524 GOSUB 1900: A=0P/2: C=-(AOINT (A)) : A=AANDFF: GOSUB 1850

1525 GOTO1442

1530 REM NOP

1531 G0T0990

1540 REM ORA

1541 GOSUB1900:AC=ACOROP:G0T0980

1550 REM PHA

1551 SP (SP) =AC: SP"=SP~ 1 ANDFF r. G0T0990

1560 REM PHP

1561 G0SUB900:SP(SP > ~SR:SP=SP-1ANDF F:GO!0990

1570 REM PLA

1571 SP=(SP+1)ANDFF:AC=SP(SP >:G0T0980:REM SEI F LAGS

1580 REM PLP

1581 SP=(SP+1)ANDFF:SR=SP(SP):G0SUB910:G0T0990

1590 REM ROL

1591 IFAD(PEEK(PC))=4THENAC=AC*2+C:GOTO1522

1592 GOSUB1900:A=0P*2+C:C=-(A >FF)

131

The Machine Language Book of the Commodore 64

1593 A=AANDFF:GOSUB1850

1594 GOTO1442

1600 REM ROR

1601 IFAD(PEEK(PC>)=4THENAC=AC/2+128*C:G0T01523

1602 GOSUB 1900: A=0P/2+128*C: C=-(AOINT (A)) : GOTO1593

1610 REM RTI

1611 SP=SP+1ANDFF:SR=SP(SP):60SUB910:GOTO1621

1620 REM RTS

1621 SP=SP+1ANDFF:A=SP < SP):SP=SP+1ANDFF:PC=A+SP(SP)*HI:G0T0990

1630 IFDTHEN1635: REM SBC

1631 GOSUB1900:V=SGN(ACAND128):AC=AC-OP-1+C:C=-(AC >=0)

1632 AC=ACANDFF:N=SGN(ACAND128):V=VAND1~N:G0T0980

1635 GOSUB1900s AC=VAL(H*(AC/16)+H*(ACAND15)>:OP=VAL(H*(OP/16)+H*

(0PAND15))

1636 AC=AC-0P+C-lsC=-(AC>=0)sIFAC<OTHENAC=AC+lOO

1637 A$=MID$(STR$(AC>,2):G0SUB2390:AC=A:G0T0980

1640 REM SEC

1641 C=l:G0T0990

1650 REM SED

1651 D=l:G0T0990

1660 REM SEI

1661 I=l:G0T0990

1670 REM STA

1671 GOSUB1900:A=AC:GOSUB1850

1672 GOT0990

1680 REM STX

1681 GOSUB1900:A=XR:GOSUB1850

1682 G0T0990

1690 REM STY

1691 GOSUB1900:A=YR:GOSUB1850

1692 G0T0990

1700 REM TAX

1701 XR=AC:GOTO1452

1710 REM TAY

1711 YR=AC:GOTO1462

1720 REM TSX

1721 XR=SP:GOTO1452

1730 REM TXA

1731 AC=XR:G0T0980

1740 REM TXS

1741 SP=XR:G0T0990

1750 REM TYA

1751 AC=YR:G0T0980

1800 REM BRANCH COMMANDS

1810 IFFL=0THENL=l:G0T0990

1820 GOSUB1985:GOTO1000

1850 REM POKE

1870 IFAD< HIORAD >HI+FFTHEN1880

1875 SP(AD-HI)=A:RETURN

1880 IFESTHENPOKEAD,A

1885 RETURN

1900 REM GET OPERAND

1910 A=AD(PEEK(PC))

1920 ONAGOSUB1930,1935,1940,1945,1950,1955,1960,1965,1970,1975,

1980,1985,1990

1925 IFAD<HIORAD >HI+FFTHENRETURN

1927 OP=SP(AD-HI):RETURN

1930 AD=O:RETURN:REM IMPLIED

1935 AD=PC+1:OP=PEEK(AD):L=1:RETURN:REM #

1940 AD=PEEK(PC+1):OP=PEEK(AD):L=1:RETURN:REM ZERO-PAGE

132

The Machine Language Book of the Commodore 64

1945 AD=O:RETURN:REM A

1950 AD=PEEK (PC+1) +HI *PEEK < PC+2 > : OP=PEEK (AD > : L==2: RETURN

1955 AD=PEEK(PC+1)+XRANDFF:OP^PEEK(AD):L=1:RETURN

1960 AD=PEEK < PC+1) +YRANDFF: 0P=PEEK (AD) s L= 1: RETURN

1965 AD=PEEK(PC+1)+HI*PEEK(PC+2)+XR:0P=PEEK(AD):L=2:RETURN

1970 AD=PEEK(PC+1 > +HI*PEEK(PC+2 > +YR:0P=PEEK(AD):L=2:RETURN

1975 AD=PEEK (PEEK (PC+1)).+H I *PEEK (PEEK (PC+1) +1ANDFF) +YR: OP-PEEK (AD)
:l =1: RETURN

1980 AD=PEEK(PC+1)+XRANDFF s AD=PEEK(AD)+HI*PEEK(AD+1)s 0P=PEEK(AD)

:l = 1: RETURN

1985 A=PEEI< (PC+1) : A=A+H I * (A > 127) +2+PC

1986 POINT (A/HI >*HI+< (A+ (A>SC) *UL> ANDFF) s RETURN: REM RELATIVE

1990 AD=PEEK(PC+1> +HI*PEEK(PC+2):AD=PEEK(AD)+HI*PEEK(AD+1):0P=PEEK

(AD):REn.JRM

2040 F0RP=ST0E:PRINT" ";

2050 A=P:G0SUB2290:REM ADDRESS

2060 PRINT" "; :A=PEEK<P):G0SUB2320:PRINT" " ; :J=PEEK(P) :0P=AD(J>

2070 0N0PG0SUB2350,2360,2360,2350,2370,2360,2360,2370,2370,2360,2360,

2360,2370

2080 PRINT" ";MN*(J>" ";

2090 0N0PG0SUB2110,2120,2130,2140,2150,2160,2170,2180,2190,2200,2210,

2220,2240

2100 PRINT" ":NEXTP

2105 IFP>=ULTHENP=P~UL

2110 RETURN

2120 PRINT"#";:G0SUB2330:P=P+1:RETURN

2130 G0SUB2330:P=P+1:RETURN

2140 PRINT" A"5:RETURN

2150 G0SUB2260:P=P+2:RETURN

2160 G0SUB2330:P=P+1:PRINT",X"

2170 G0SUB2330:P=P+2:PRINT",Y"

2180 G0SUB2260:P«P+2s PRINT",X"

2190 G0SUB2260:P=P+2:PRINT",Y"

2200 PRINT"(";sG0SUB2330 5 P=P+1

2210 PRINT"(";:G0SUB2330:P=P+1

:RETURN

:RETURN

:RETURN

:RETURN

PRINT"),Y";:RETURN

PRINT",X)";:RETURN

2220 A=PEEK(P+1):A=A+HI*<A>127>+2+P

2230 A=lNT(A/HI)*HI+<(A+(A>SC)*UL>ANDFF):PRINT11*";:G0SUB2290

:P=P+1:RETURN
2240 PRINT"(";:G0SUB2260

2250 PRINT")"5:P=P+2:RETURN

2260 PRINT"*";

2270 A=PEEK(P+l)+HI*PEEK(P+2>

2280 REM HEX ADDRESS A

2290 HB=INT(A/HI):A=A~HI*HB

2300 PRINTH$<HB/16)H$(HBAND15>;

2310 REM HEX BYTE A

2320 PRINTH*<A/16)H*(AAND15>;:RETURN

2330 PRINT"*";

2340 A=PEEK(P+l):G0T02320

2350 PRINT" ";:RETURN

2360 G0SUB2340:PRINT" ";:RETURN

2370 G0SUB2340:PRINT" ";:A=PEEK(P+2):G0T02320

2380 IFASC(A*)=42THENEND

2390 A=O:FORJ= 1TOLEN(A$>:X=ASC(RIGHT*(A*,J> >-48:X =X+(X>9)*7sA=A+X*

(16t (J-1 > > sNtr. XT

2391 RETURN

3000 PRINT: PRINT" {C/DN3- CC/DN> " : PRINT" ADDRESS: ****-»KC/LF} <!C/LF>

CC/LFX.C/I..F3-IC/LFXiC/LFJ11; : INPUTA*: G0SUB2380
3010 PRINT" <:C/UP>" , , : AD=A: 0P=PEEK (AD) : A=0P: G0SUB2320: INPUT" -CC/LF^-

CC/LF.} <:C/I F>CC/.LF>"5A*sB0SUB2380
3020 G0SUB1850: PRINT" <C/UP>
THEN1000

3030 G0T0200

3100 INPUT"ACTUAL SIMULATION Y<C/LF}CC/LF><:C/LF>";ES*sES«ES*»"Y
3110 PRINT"tC/UP> »sG0T0200

133

The Machine Language Book of the Commodore 64

10000

10010

10020

10030

10040

10050

10060

10070

10080

10090

10100

10110

10120

10130

10140

10150

10160

10170

10180

10190

10200

10210

10220

10230

10240

10250

10260

10270

10280

10290

10300

10310

10320

10330

10340

10350

10360

10370

10380

10390

10400

10410

10420

10430

10440

10450

10460

10470

10480

10490

10500

10510

10520

10530

10540

10550

10560

10570

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA

DATA"

DATA"

DATA1

DATA"

DATA

DATA"

DATA'

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

DATA"

",0,1,"AND",2,8,"ROL",40,8

",0,1,"RTI",42,1,"EOR",24,11

",0,1,"???",0,1,"???",0,1

",24,3,"LSR",33,3,"???",0,1

11 , 4b ., &,"b TX",49,3, " 777' , O , 1

",4,12,"STA",48,10,"???",0,

",0,1,"STY",50,6,"STA",48,6

11 , 49 , 7 , "???",0,1, "TYA" , 56, 1

LDX

LDA

TAY

"■ ,0,1,"STY",50,6,"STA",48,6

(",49,7,"???",0,1,"TYA",56, 1

V,48,9,"TXS",55,1,"???",0,1

'",0,1,"STA",48,8,"???",0,1

>",0,1,"LDY",32,2,"LDA",30,1t

C",31,2,"???",0,1,"LDY",32,3

",30,3,"LDX",31,3,"???",O,1

",52,1,"LDA",30,2,"TAX",51,1

134

The Machine Language Book of the Commodore 64

10580 DATA"???",0,1,"LDY",32,5,"LDA",30,5

10590 DATA"LDX",31,5,"???",0,1,"BCS",5,12

10600 DATA"LDA",30,10,"???",0,1,"???",0,1

10610 DATA"LDY",32,6,"LDA",30,6,"LDX",31,7

10620 DATA"???",0,1,"CLV",17,1,"LDA",30,9

10630 DATA"TSX",53,1,"???",0,1,"LDY",32,8

10640 DATA"LDA",30,8,"LDX",31,9,"???",0,l '

10650 DATA"CPY",20,2,"CMP",18,11,"???",0,1

10660 DATA"???",0,1,"CPY",20,3,"CMP",18,3

10670 DATA"DEC",21,3,"???",0,1,"INY",27,1

10680 DATA"CMP",18,2,"DEX",22,1,"???",0,1

10690 DATA"CPY",20,5,"CMP",18,5,"DEC",21,5

10700 DATA"???",0,1,"BNE",9,12,"CMP",18,10

10710 DATA"???",0,1,"???",0,1,"???",0,1

10720 DATA"CMP",18,6,"DEC",21,6,"???",0,1

10730 DATA"CLD",15,1,"CMP",18,9,"???",0,1

10740 DATA"???" ,0, 1 , "???" ,0,1, "CMP" ,18,8

10750 DATA"DEC",21,8,"???",0,1,"CPX",19,2

10760 DATA"SBC",44,1,"???",0,1,"???",0,1

10770 DATA"CPX",19,3,"SBC",44,3,"INC",25,3

10780 DATA"???",0,1,"INX",26,1,"SBC",44,2

10790 DATA"NOP",34,1,"???",0,1,"CPX",19,5

10800 DATA"SBC",44,5,"INC",25,5,"???",0,1

10810 DATA"BEQ",6,12,"SBC",44,10,"???",0,1

10820 DATA"???",0,1,"???",0,1,"SBC",44,6

10830 DATA"INC",25,6,"???",0,1,"SED",46,1

10840 DATA"SBC",44,9,"???",0,1,"???",0,1

10850 DATA"???",0,1,"SBC",44,8,"IHC",25,8

10860 DATA"???",0,1

135

The Machine Language Book of the Commodore 64

Program description for the single-step simulator

100 - 190 Build the register display, initialize variables

and fields.

200 - 360 Display the register contents. The contents of

the registers are displayed in hexadecimal. The

flags are displayed using the CHR$ function by

adding the value of the flag (0 or 1) to 48.

400 - 530 The keys are tested. If the space bar is

pressed, execution passes to the simulator

routine at line 1100. The register commands

result in branches to input routines which

display the old value and wait for the input of

the new value. For the flags, the state is

simply reversed. If the "cursor down" key is

pressed, the disassembler routine is called and

the next instruction is displayed.

900 - 920 Calculate the value of the status register SR

based on the individual flags.

980 Set N and Z flags.

990 Increment program counter.

1000 - 1010 Disassemble the next instruction.

1100 - 1150 Perform single-step simulation. The appropriate

routine is called depending on the operation

code.

1200 - 1751 Simulate routine for all 6510 commands. The

routines are alphabetically ordered by mnemonic.

The prqogram counter is incremented according to

the length of the instruction in line 990. The N

and Z flags are set according to the value in

the accumulator by a jump to line 980.

1800 - 1820 All branch commands are handled here, after the

corresponding flag value is placed in the

variable FL.

1850 - 1885 This routine is used to write values in memory.

The stack area from $100 to $1FF is handled

differently. The POKES are executed only if

actual simulation is desired (variable ES).

1900 - 1990 Get the operands for the commands based on the

addressing mode. After calling this routine, the

address of the operand is in AD, the value

itself in OP.

136

The Machine Language Book of the Commodore 64

2040 - 2370 Disassembles then next instruction after each

single step. The operand is displayed according

to the addressing mode in line 2070. If the

memory location does not contain a legal

instruction code, three question marks are

displayed instead. The following routines carry

out the addressed task as well as the conversion

from decimal to hex.

3000 - 3030 Displays and changes the memory contents. The

changes are allowed only if the actual

simulation is selected.

3100 Select the actual simulation parameters.

10000-10860 Contain the instruction mnemonics, operation

codes and addressing modes.

137

The Machine Language Book of the Commodore 64

Descriptions of the important variables.

FF

HI

UL

SC

MN$(255)

OP(255)

AD(255)

SP(255)

H$(15)

PC

AC

XR

YR

SR

SP

N

V

B

D

I

Z

C

T$

L

ES

OP

constant 255

constant 255

constant 65536

constant 32767

table of 6510 mnemonics

table with the correspondi

the single-step simulation

table with the addres:

instruction.

the simulator stack

field with hex digits

program counter

accumulator

X register

Y register

status register

stack pointer

negative flag

overflow flag

break flag

decimal flag

interrupt flag

zero flag

carry flag

pressed key

length of operands

flag for actual simulation

operand

138

The Machine Language Book of the Commodore 64

7. Machine Language Programming on the Commodore 64

Machine language is particularly well-suited for programming

high resolution graphics on the Commodore 64. In this

section. We begin by programming graphics in BASIC and then

converting the corresponding routines to machine language.

By doing this, you will become well acquainted with many

machine language programming techniques.

Graphics programming can be done in BASIC only with a

confusing set of PEEKS and POKESs, By writing a few machine

language routines we can greatly simplify these graphics.

You will learn how to combine machine language programs with

BASIC programs, thereby taking advantage of the strong

points of both languages.

The programming details of the video-controller kernal

routines are discussed only as much as necessary to solve

our problem. If you want to get a closer look at the

hardware and operating system of the Commodore 64, we

recommend the book The Anatomy of the Commodore 64 available

from ABACUS Software.

Before you turn to the first example, take a look at how you

can use machine language programs from BASIC and how how to

pass parameters between the two programs.

The normal way to call a machine language program from BASIC

139

The Machine Language Book of the Commodore 64

is to use the SYS command to specify the memory location

where execution is to begin. SYS assumes that the machine

language program is already in memory and then passing

control to it. When the machine language program executes an

RTS instruction (return from subroutine), execution returns

to the BASIC statement following the SYS command.

Some machine language routines require no parameters to be

passed to it. A routine for clearing the screen, for

example, does not require any parameters.

Other routines require parameters. A routine for plotting a

point requires an X and Y coordinate, for example.

How can you pass parameters to machine language routines?

There are several different techniques for passing

parameters:

a. Using the pigeon-hole method, you can place

the parameters in one or more memory locations

previously agreed upon. For our example, one

memory location contains the horizontal

coordinate and another memory location the

vertical coordinate. You can do this from

BASIC with two POKE commands. The machine

language program can then get the values of

140

The Machine Language Book of the Commodore 64

the coordinates from the memory locations and

process them.

b. Using the register pass area method, you can

pass values between the BASIC program and the

machine language program. When a SYS command

is executed by BASIC, it is possible to

transfer specific values through the

registers. Because we cannot access the

processor registers directly from BASIC, four

memory locations are reserved for this

purpose. When the SYS instruction is executed,

the contents of the following memory locations

are copied into the registers before the

branch to the routine is made.

780 => accumulator

781 => X register

782 => Y register

783 => status register

To start a machine language routine with a

specific value in the accumulator, you would

POKE loca.tion 780 with the desired value.

Addresses 781 and 782 pertain to the X and Y

registers. Caution must be exercised in

assigning a value to the status register. Take

care not to unintentionally set the decimal or

interrupt flag since this can lead to

141

The Machine Language Book of the Commodore 64

complications.

After the machine language routine is

finished, the contents of these registers are

saved in these same memory locations. So the

machine language routine can pass information

back to the BASIC program using the same

technique. To retrieve a value, the BASIC

program merely PEEKS the desired register pass

area. Using this method, it is possible to

transfer three or possibly four 8-bit values

between the BASIC and machine language

programs. This should suffice for most

applications. If more parameters must be

transferred, you must establish memory

locations as described above.

c. Using the BASIC interpreter formula evaluation

routine, you can pass an almost unlimited

number of parameters to the machine language

routine. For example, when the interpreter

encounters an instruction such as POKE 780,10,

it uses a built-in POM routine to evaluate the

parameters following the POKE keyword. This

routine evaluates not only constants, but

complicated expressions as well, such as POKE

A+7.5*Z%(INT(SIN(X)*1000)),EXP(X). You can

call this ROM routine from your own machine

langauge program. Later you will see how to

142

The Machine Language Book of the Commodore 64

use these routines. For now, use the register

pass area to transfer parameters directly via

the registers.

Before discussing graphics programming, you should be

acquainted with a few principles.

The distinguishing characteristic of high resolution

graphics is that you can access each individual pixel on the

screen. This is unlike the normal text mode, where you can

access only complete characters (8X8 pixels). For normal

text there are 25 * 40 characters at your disposal; with

high resolution graphics there are eight times as many in

each direction, 200 * 320 points.

In normal text mode, each character requires one byte in

video RAM. Each screen location can display any of 256

different characters. Normal text mode requires 25 * 40 * 1

= 1000 bytes of memory called video RAM. Video RAM is

located beginning at address 1024 thru 2023 ($400 to $7E8).

This starting address of the video RAM can be changed in

steps of 1 Kbyte ($400, $800, $C000, $1000, etc.) by

programming the video controller.

In high resolution graphics mode, each point requires one

bit. Each pixel can be either on or off. High resolution

graphics requires 200 * 320 * 1 bit = 64000 bits = 8000

bytes of memory. Memory used in this way is often called the

143

The Machine Language Book of the Commodore 64

bit-mapped area. The starting address of the bit-mapped area

is specified by programming the video controller in the

Commodore 64.

Before programming the video controller, you have to first

decide where the 8K bit-mapped area is to be located. At

first, you may be tempted to use 8K storage from the area

that BASIC normally uses. But since you are programming in

machine language you have other alternatives. The Commodore

64 has a full 64K of RAM, in addition to the ROMS, input and

output devices and character ROMS. You can use the RAM that

lies "underneath" (in the same address range) the BASIC and

kernal ROM. This area is located beginning at address $E000

to $FFFF. Normally you cannot use this area from BASIC

because you must first turn off the BASIC interpreter and

operating system when accessing these locations.

The video RAM normally used for the text screen is used as

color memory when using high resolution graphics. Since the

video RAM and bit-mapped areas must be located within the

same 16K range ($C000 - $FFFF), you can use the from $C000

to $C3FF for color memory. Since there is only IK of video

RAM available for use as color memory, each byte of video

RAM determines the color of the 64 pixels within the field

of an 8x8 cells.

Now we present several routines which you can use for

programming in high resolution graphics.

144

The Machine Language Book of the Commodore 64

The first routine changes the Commodore 64 from text mode to

high resolution graphics mode. By using the area bemeath the

ROMS for the bit-mapped graphics area, the normal text

screen contents are not destroyed. The contents is preserved

when we switch from one mode to another. Here's the program

in pseudo-BASIC. Of course this BASIC program does not run

since we cannot use hexadecimal numbers as constants.

100 V = 53428 : REM VIDFO CONTROLLER START ADDRESS

110 VI = V+17 : REM GRAPHICS-MODE SWITCH ADDRESS

120 V2 = V+24 : REM VIDEO RAM ADDRESS

130 CIA = $DD00 : REM 16K RANGE

140 POKE VI,59

150 POKE V2,8

160 POKE CIA,0

170 END

To convert this to machine language, first decide where the

machine language program is to be stored. Since the area

from $C000 to $C400 is used as color memory, use the area

beginning at $C400 for the program. The conversions of these

commands to machine language is straight-forward. Remember

to RUN the short program UNTOKEN before creating the

following assembler source program.

100 VIDEO = 53248 ; VIDEO CONTROLLER

110 VI = 53625 : ADDRESS FOR GRAPHICS MODE

120 V2 = 53272 ; ADDRESS FOR VIDEO RAM ADDRESS

130 CIA = $DD00 ; 16K SELECTION

140 *= $C400 ; START OF OUR ROUTINE

150 LDA #59

160 STA VI

170 LDA #8

180 STA V2

190 LDA #0

200 STA CIA

210 RTS

220 .EN

145

The Machine Language Book of the Commodore 64

Assembling the above program, gives you this listing:

D000

D011

D018

DDOO

C400

C402

C405

C407

C40A

C40C

C40F

A9

8D

A9

8D

A9

8D

60

3B

11 DO

08

18 DO

00

00 DD

100

110

120

130

140

150

160

170

180

190

200

210

220

VIDEO

VI

V2

CIA

ON

=

=

=

* =

LDA

STA

LDA

STA

LDA

STA

RTS

.EN

53248

53265

53272

$DD00

$C400

#59

VI

#8

V2

#0

CIA

Now let's write a routine which switches the Commodore 64

back to normal text mode. You do this by loading the video

controller registers with their original values. For the

sake of simplicity, append this routine to the previous one.

100 VIDEO = 53248 ; VIDEO CONTPOLLER

110 VI = 53625 : ADDRESS FOR GRAPHICS MODE

120 V2 = 53272 ; ADDRESS FOR VIDEO RAM ADDRESS

130 CIA = $DD00 ; 16K SELECTION

140 *= $C400 ; START OF OUR ROUTINE

150 ON LDA #59

160 STA VI

170 LDA #8

180 STA V2

190 LDA #0

200 STA CIA

210 RTS

220 ; TURN OFF

230 OFF LDA #27

240 LDA VI

250 LDA #21

260 STA V2

270 LDA #3

280 STA CIA

290 RTS

300 .EN

After assembling this program, you should display the symbol

146

The Machine Language Book of the Commodore 64

table. The symbols ON and OFF have been defined, even though

they are not referred to in the program? We have done this

because these addresses are used later for the calls via the

SYS instruction.

D000

D011

D018

DDOO

C400

C402

C405

C407

C40A

C40C

C40F

C410

C410

C412

C415

C417

C41A

C41C

C41F

C400 /

SOURCE

A9

8D

A9

8D

A9

8D

60

A9

8D

A9

8D

A9

8D

60

3B

11

08

18

00

00

IB

11

15

18

03

00

C420

FILE

0 ERRORS

OFF

VIDEO

C410

D000

DO

DO

DD

DO

DO

DD

/
IS

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

0020

VIDEO

VI

V2

CIA

ON

OFF

EXAMPLE.SRC

CIA

VI

DDOO

D011

=

=

=

=

* =

LDA

STA

LDA

STA

LDA

STA

RTS

LDA

STA

LDA

STA

LDA

STA

RTS

.EN

ON

V2

53248

53265

53272

$DD00

$C400

#59

VI

#8

V2

#0

CIA

; TURN OFF

#27

VI

#21

V2

#3

CIA

C400

D018

Before you test these routines, convert the starting

addresses ON and OFF into decimal: $C400 is equal to 50176,

$C410 is equal to 50192. You can test the routines by using

a short BASIC program:

100 SYS 50176 : REM GRAPHICS ON

110 GET A$: IF A$=IIH THEN 110

120 SYS 50192 : REM GRAPHICS OFF

147

The Machine Language Book of the Commodore 64

This program switches to the high resolution graphics mode,

waits for a key press and then switches back to the normal

text mode. Try it!

When you RUN the program, a mixture of colored squares

appears on the screen. What you see are the random values

that the unused RAM area contains after the computer is

turned on. If you press a key, you return to the normal

text screen mode.

The next task is to clear the high-resolution graphic screen

and color memory. In BASIC you can perform this by using a

loop to POKE the bit-mapped graphics area.

To erase all the points in the bit-mapped graphics area,

each bit must be set zero. Therefore each byte of the bit

mapped area is also set to zero. The loop must clear the

area beginning at address $E000 through $FFFF (actually to

$FF3F because only 8000 and not 8192 bytes are used).

FOR I = 53744 TO 65535 : POKE 1,0 : NEXT

You can do this with a BASIC program, but it takes about 30

seconds to execute. In machine language the whole thing

takes place much faster.

Earlier we write a machine language program to display the

Commodore 64's character set on the screen. We used an index

148

The Machine Language Book of the Coininodore 64

register to control the program loop. This next looj ,

requires a range beyond the 256 maximum range of the X and Y

index registers. Since you must clear 8000 bytes (length of

the bit-mapped area) you can do this with two nested loops.

In BASIC it might look like this:

100 AD = 57344

110 FOR X = 0 TO 31

120 FOR Y = 0 TO 255

130 POKE AD+Y, 0

140 NEXT Y

150 AD = AD+256

160 NEXT X

Here we divided the range of 8192 bytes into 32 parts (or

"pages") of 256 bytes each. During each pass through the

loop 256 bytes are cleared. Then the base address (AD) is

incremented by 256 and the next 256 bytes are cleared. The

occurs a total of 32 times, as controlled by the variable X.

As an "freebie" we also cleared an extra 192 bytes in the,

last page (bytes 8001 through 8192). Since these 192 bytes

are unused, this won't cause us any problems. Now convert

the BASIC program to machine language:

100 AD = $E000

110 LDA #0 ; ERASE ACC

120 LDX #0

130 LDY #0

140 STA AD,Y

150 INY

160 BNE SYMB1

170 ; AD = AD + $100

180 INX

190 ; IS X = 31?

200 ; NO, THEN BACK TO LINE 130

210 .EN

149

The Machine Language Book of the Commodore 64

Some missing pieces from the above program. Can you

correctly place the label SYMB1? It should be placed at line

140. Variable AD is not yet incremented. Use the indirect

indexed addressing mode for this. Using this technique, the

actual address is obtained from the sum of the two-byte

pointer in page zero and the Y-register. Later you can

increment this pointer by $100, as called for in line 170.

The indexed addressing mode used in line 140 above can

access a range of only 256 bytes, but the indirect indexed

addressing technique overcomes this limitation. The test of

the X-register for 31 in line 190 and the branch back in

line 200 are straight-forward. Here's the changes to the

above program:

100 AD = $E000

110 LDA #0 : ERASE ACC

120 LDX #0

130 SYMB2 LDY #0

140 SYMB1 STA (AD),Y

150 INY

160 BNE SYMB1

170 ; AD = AD + $100

180 INX

190 CPX #32

200 BNE SYMB2

210 .EN

Using indirect indexed addressing, address AD must be a two-

byte pointer located in page zero, not an absolute address

as before. You can use the memory locations $FA and $FB for

this pointer. This pointer is loaded with the value $E000 at

the beginning of the routine - the low-byte ($00) in $FA and

the high-byte ($E0) in $FB. Now add an RTS instruction to

150

The Machine Language Book of the Commodore 64

the end of the routine, and the final program looks like

this:

90 *= $C420

100 LDA #<$E000

102 STA $FA
104 LDA #>$E000

106 STA $FB

110 LDA #0 ; ERASE ACC

120 LDX #31

130 SYMB2 LDY #0

140 SYMB1 STA (AD),Y

150 INY

160 BNE SYMB1

170 INC $FB

180 INX

190 CPX #32

200 BNE SYMB2

205 RTS

210 .EN

This routine is assembled beginning at $C420. Save the

source program to disk and then assemble it.

00FA

00FB

C420

C420

C422

C425

C427

C4 2A

C42C

C42E

C430

C432

C433

C435

C438

C439

C43B

C43D

A9

8D

A9

8D

A9

A2

A0

91

C8

DO

EE

E8

E0

DO

60

00

FA 00

E0

FB 00

00

00

00

FA

FB

FB 00

20

Fl

90 AD

95 ADI

97

100

102

104

106

110

120

130 SYMB2

140 SYMB1

150

160

170

180

190

200

205

210

=

*=

LDA

STA

LDA

STA

LDA

LDX

LDY

STA

INY

BNE

INC

INX

CPX

BNE

RTS

.EN

$FA

$FB

$C420

#<$E000

AD

#>$E000

ADI

#0

#31

#0

(AD),Y

SYMB1

ADI

#32

SYMB2

151

The Machine Language Book of the Commodore 64

C420 / C43E / 001E

SOURCE FILE IS EXAMPLE 2.SRC

0 ERRORS

AD OOFA ADI OOFB SYMB1 C430 SYMB2 C42E

Now that the above program works, can you write a program

that presents a more elegant solution? First, you can use

zero-page addressing for the two addresses AD and ADI. This

is done by using an asterisk before each of the labels. You

can also remove the instruction for loading the accumulator

with zero in line 110 as this already occurs in line 100;

but you must first reverse the order of the assignments in

lines 100 to 102 and 104 to 106. If you let the X loop vary

from 32 to 0f you can eliminate the comparison in line 190.

These improvements enable the program a bit shorter. Here's

the new listing:

OOFA

OOFB

C420

C420

C4.22

C424

C426

C428

C42A

C4 2B

C42D

C42E

C430

C432

C433

C435

A9

85

A9

85

A2

A8

91

C8

DO

E6

CA

DO

60

E0

FB

00

FA

20

FA

FB

FB

F5

90 AD

95 ADI

97

100

102

104

106

110

120 SYMB2

130 SYMB1

140

150

160

170

180

190

200

=

=

* =

LDA

STA

LDA

STA

LDX

TAY

STA

INY

BNE

INC

DEX

BNE

RTS

.EN

$FA

$FB

$C420

#>$E000

*AD1

#<$E000

*AD
#32

(AD),Y

SYMB1

*AD1

SYMB2

C420 / C436 / 0016

SOURCE FILE IS EXAMPLE 2.SRC

0 ERRORS

152

The Machine Language Book of the Commodore 64

AD OOFA ADI OOFB SYMBl C42B SYMB2

With these changes, the program is shorter and faster. Try

out the machine language routines by calling them with the

following BASIC program:

100 SYS 50176 : REM GRAPHICS ON

110 GET A$: IF A$ = IIH THEN 110

120 SYS 50208 : REM ERASE GRAPHIC IMAGE

130 GET A$: IF A$ = IMI THEN 130

140 SYS 50192 : REM GRAPHICS OFF

After RUNning itf the bit-mapped graphics mode of the

Commodore 64 is turned on. When a key is pressed, the

graphics screen is cleared. This happens almost immediately.

With the earlier BASIC version, this took 30 seconds! By

pressing a key again, you turn off the bit-mapped graphics

mode and return to normal text mode. Now you can write the

corresponding routine to initialize the color memory.

This routine accepts two parameters - one representing the

background color and the other the color of the set points.

The lower four bits (nybble) of each color memory byte

determines the background color and the upper nybble, the

color of the set points. Each color memory byte controls a

group of 8x8 pixels, as mentioned earlier. For example, if

the value of the byte is $10, then the lower nybble is 0 and

the upper nybble is 1. This means that the background is

black and the foreground is white for that particular 8X8

153

The Machine Language Book of the Commodore 64

cell. You can pass the colors to the routine in the

accumulator. Try to solve the problem yourself and then

compare your solution the one below. Use $C440 as the

starting address of the routine. Here's our listing:

OOFA

OOFB

C440

C440

C442

C444

C446

C448

C44A

C44C

C44D

C44F

C451

C452

C454

AO

84

AO

84

A2

91

C8

DO

E6

CA

DO

60

CO

FB

00

FA

04

FA

FB

FB

F6

90 AD

95 ADI

97

100

102

104

106

110

130 SYMB1

140

150

160

170

180

190

200

=

* =

LDY

STY

LDY

STY

LDX

STA

INY

BNE

INC

DEX

BNE

RTS

.EN

$FA

$FB

$C420

#>$C000

*AD1

#<$C000

*AD

#4

(AD),Y

SYMB1

*AD1

SYMB1

C440 / C455 / 0015

SOURCE FILE IS EXAMPLE 3.SRC

0 ERRORS

AD OOFA ADI OOFB SYMB1 C44A

There is a small change to the previous program. The

instruction at 180 branches to SYMB1 since the Y-register

contains zero; reloading with zero at SYMB2 is superfluous.

Try your version now. The starting address is $C440 or

50240. Pass the color value to the accumulator with POKE

780,16

Now that we have taken care of the "housekeeping routines",

you can start programming the most important routine for

154

The Machine Language Book of the Commodore 64

using high resolution graphics: setting and erasing

individual points. The next routine demonstrates several

programming techniques.

First a word about the layout of the bit-mapped graphics

area.

Look at the table on the following page. It illustrates the

relationship of the bit-mapped graphics area to the normal

40 column by 25 lines text screen. The numbers in the table

represent the offset from the start of the bit-mapped

graphics memory that specify if a particular pixel is turned

on or off. Let's call the address of the start of the bit

mapped graphics memory + this offset, the target address.

For example, offset 9 of the bit-mapped graphics area

controls the pixel at X = 8, Y=l. The target address for this

point is $E009 ($E000 + 9), where $E000 is the start of tbe

bit-mapped graphics area.

155

The Machine Language Book of the Commodore 64

X—coordinate

0-7 8-15 312-319

COLUMN/

LINE

Line 0

Line 1

...

Line 24

Col

0

1

2

3

4

5

6

7

320

321

322

323

324

325

326

327

• • • •

7680

7681

7682

7683

7684

7685

7686

7687

0 Col 1

8

9

10

11

12

13

14

15

328

329

330

331

332

333

334

335

7688

7689

7690

7691

7692

7693

7694

7695

.... Col 39

312

313

314

315

316

317

318

319

632

633

634

.... 635

636

637

638

639

7992

7993

7994

.... 7995

7996

7997

7998

7999

Y—coordinate

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

• • • •

192

193

194

195

196

197

198

199

The screen is divided into 25 lines of 40 columns each; each

"cell" requires 8 bytes to represent the 64 pixels within

that cell (8 pixels per/line X 8 lines/cell). The contents

of a single byte controls one row of 8 pixels. Each bit

controls an individual pixel on the screen. The highest-

order bit represents the pixel on the far left; the lowest-

order bit represents the pixel on the far right.

bit number

contents

76543210

10001100

156

The Machine Language Book of the Commodore 64

If a byte in the bit-mapped area contains the bit pattern of

%10001100 (or $8C in hex), this means that the first,

fifth, and sixth pixels from the left are set. Let's call

the contents of the byte at the target address the target

value.

To permit easy manipulation of the graphics, each pixel is

addressed by its horizontal (X) and vertical (Y)

coordinates. The coordinates range from 0 to 319 for the X-

axis (left side of screen to right) and from 0 to 199 for

the Y-axis (top of screen to bottom).

First convert the coordinates to actual offsets within the

bit-mapped graphics area. Note that each cell is 8-bytes in

length. Also note that X-coordinates of 0 thru 7 always fall

within the same 8-byte block. The same holds true for X-

coordinates of 8 thru 15, 16 thru 23, etc. To convert the X-

coordinate value to the start of the appropriate 8-byte

block, ignore the lower three bits of the X-coordinate

value. Do this by using an AND instruction. To ignore the

lower three bits, do the following:

X AND %1111 1000

Here's an example:

X-coordinate ==========> 18, . n

Binary representation==> %0001 0010aecimai
k f

y

Mask for ANDing========> %1111 1000

Result=================> %0001 0000 = 16decimal

157

The Machine Language Book of the Commodore 64

The byte which controls the pixel with, an X-coordinate of 18

is in the block beginning at offset 16.

The offset for the X-coordinate is calcuated as follows:

OFFSETX = (XH * 256) + (XL AND 248)

The reason for XL and XH is that an X-coordinate may range

from 0 to 319 which is beyond the 255 range of a single

byte. Therefore the X-coordinate must be specified using two

bytes.

Now for the Y-coordinate. The offset for the Y-coordinate is

calculated as follows:

OFFSETY = (Y AND 7) + 40 * (Y AND 248)

The complete formula for the calculating the offset for a

given X a Y coordinate is as follows:

OFFSET = XH*256 + (XL AND 248) + (Y AND 7) + 40*(Y AND 248)

Now translate the formula into machine language. Use the

registers to pass information to the routine as follows:

REGISTER CONTENTS

Y => Y-coordinate

A => XL-coordinate

X => XH-coordinate

Again, an X-coordinate can range from 0 to 319, so this

158

The Machine Language Book of the Commodore 64

requires two bytes of storage. The Y-coordinate is kept in

the Y-register. You also need a second 16-bit storage

location for storing the offset (SUML/SUMH).

100 XL = $FA

110 XH = $FB

120 SUML = $FC

130 SUMH = $FD

140 *= $C460

150 STA *XL

160 STX *XH ; SAVE X-COORDINATE

170 TYA ? Y-COORDINATE

180 AND #$F8

First calculate the last term of the formula (EXP1 = 40 * (Y

AND 248). The 6510 has no multiplication instruction.

Therefore an alternative way of performing multiplication is

needed. Recall that a value can be doubled by shifting the

contents to the left. Reduce the multiplication by 40 to

several doublings:

A* 40 =>A*2*2 + A*2*2*2

Here, you first get twice the original value (A * 2), then

four times (A * 2 * 2), and then five times by adding the

original value (A * 2 * 2 + A). Three more doublings by 2 (2

* 2 * 2 = 8) yield the original value times 4 0•

190 STA *$FE ; SAVE ORIGINAL VALUE

200 STA *SUML

210 LDA #0

220 STA *SUMH ; CLEAR HI-BYTE

230 ASL *SUML ; DOUBLING THE ORIGINAL VALUE

240 ROL *SUMH ; ..IN SUML/SUMH

250 ASL *SUML ; DOUBLING VALUE AGAIN PRODUCES

260 ROL *SUMH ; ..ORIGINAL VALUE * 4 IN SUML/SUMH

159

The Machine Language Book of the Commodore 64

When shifting 16 bits, you must use a combination of the ASL

instruction for the low-byte (8-bits) and the ROL instruc

tion for the high-byte (8-bits). If the ASL instruction

causes the highest bit to be shifted out of the operand, the

carry flag is set. The ROL instruction shifts takes into

account by shifting this carry flag into the low-order bit

of the operand, keeping the mathematics exacting. Now you

can add the original value.

270 CLC ; CLEAR OVERFLOW

280 LDA *SUML

290 ADC *$FE

300 STA *SUML ; STORE RESULT AGAIN

310 LDA *SUMH

320 ADC #0

330 STA *SUMH ;ORIGINAL VALUE * 5 IN SUML/SUMH

Why do we add zero to SUMH? If a carry occurs in the SUML

addition, it must be taken into account by adding the carry

to the high-byte. Adding zero adds any carry which may have

been generated by the addition of the low-bytes.

Now we must double the result three more times.

340 ASL *SUML

350 ROL *SUMH ; ORIGINAL VALUE * 10 IN SUML/SUMH

360 ASL *SUML

370 ROL *SUMH ; ORIGINAL VALUE * 20 IN SUML/SUMH

380 ASL *SUML

390 ROL *SUMH ; ORIGINAL VALUE * 40 IN SUML/SUMH

This takes care care of the first and most difficult term.

Now add the second expression (EXP2 = (Y AND 7) + EXP 1).

160

The Machine Language Book of the Commodore 64

This is done using another 16-bit addition.

400 TYA ; Y-COORDINATE IN ACCUMLATOR

410 AND #7

420 CLC

430 ADC *SUML

440 STA *SUML

450 LDA *SUMH

460 ADC #0

470 STA *SUMH

Next, we add the X-value AND 248 (EXP3 = (X AND 248) +

EXP2). EXP3 is the offset to the memory location for the

specified X and Y coordinates. It is contained in SUML/SUMH

after the instruction at line 550 is executed.

480 CLC

490 LDA *XL

500 AND #$F8

510 ADC *SUML

520 STA *SUML

530 LDA *XH

540 ADC *SUMH

550 STA *SUMH

The bit-mapped graphics begins at $E000, so add this value

to the offset (TARGET = $E000 + EXP3) to arrive at the

target aaddress.

560 CLC

570 LDA #<$E000

580 ASC *SUML

590 STA *SUML

600 LDA #>$E000

610 ADC *SUMH

620 STA *SUMH

At last the target address is in SUML/SUMH.

161

The Machine Language Book of the Commodore 64

Remember that the contents of the byte at the target address

controls 8 pixels on the bit-mapped graphics screen. From

the X-coordinate, we must now determine the bit positon

within that byte must be set to one in order for the pixel

to be turned on.

Earlier we ignored the lowest three bits of the X-coordinate

to calculate the target address. Here's where use use the

information contained in those three bits. First isolate

the lowest three bits of the X-coordinate:

XB = XL AND 7

XB is now a value between 0 and 7 and represents the X-

coordinate offset within the bit-mapped control byte. The

following table shows the correspondence of the X-coordinate

offset and its bit position within the control byte:

X

coord. bit

offset position

0 => 7

1 => 6

2 => 5

3 => 4

4 => 3

5 => 2

6 => 1

7 => 0

The lowest three bits of the X-coordinate and the bit

positon are inverses of each other. You can convert an)<-

coordinate offset to a bit position by using the exclusive

162

The Machine Language Book of the Commodore 64

OR instruction:

630 LDA *XL ;low-byte of X-coordinate

640 AND #7 ;isolate the lowest three bits

650 EOR #7 ;convert to bit position

From the earlier calculations, we found the target address.

From the above calculations, we found the bit position which

needs to be set at that target address to turn on the pixel.

We know that each bit position has a certain value, which we

call the target value. Now we have to convert that bit

position to the target value. This target value is then

stored at the target address to set the specific pixel.

To calculate the target value corresponding to this bit

position we shift a one bit to the left for the number of

times indicated by the bit position. Here's the code:

660 TAX ; bit position in X-register

670 LDA #1 ;"one" bit

680 SHIFT DEX

690 BMI OK

700 ASL A ; shift to left

710 BNE SHIFT

720 OK ...

The bit position is contained in the accumulator after

executing the instruction in line 650. The target value is

calculated by shifting left as many times as specified by

the X-register. In lines 680 and 690 the contents of the X-

register are decremented and checked to see if it's negative

(less than zero). If not, continue shifting another position

163

The Machine Language Book of the Commodore 64

to the left. The branch in line 710 is always executed

because the result of the shift is never equal to zero.

Storing the target value contained in the accumulator at the

target address turns on the desired pixel.

But there's another consideration. Remember that each target

address controls 8 pixels. If another pixel is already set

at that target address, then storing the above target value

destroys the previous value and erase the other pixels

controlled by the same target address.

To avoid this, you should combine the previous value at the

target address with new target value. Use the OR instruction

for this. By ORing the old value with the new target value,

any previously set pixels are not erased.

The target address is pointed to by the contents of

SUML/SUMH. To combine the previous value with the new

value, you can do the following:

720 OK LDY #0

730 ORA (SUML),Y

740 STA (SUML),Y

7 50 RTS

Now the new pixel is set and we are done. There is one small

point which we overlooked.

164

The Machine Language Book of the Commodore 64

The OR instruction in line 730 accesses the contents of a

memory location in the range from $E000 to $FFFF. The

Commodore 64 normally returns the value of the contents of

the kernal ROM also located at these same addresses (but in

a different bank), A "switch" controls access to either the

ROM or RAM at those addresses. The ORA (SUML),Y instruction

above would access the ROM and not the bit-mapped graphics

area. To access the RAM containing the bit-mapped graphics

area, set the switch (I/O register) located at address 1.

When you do thisr you must inhibit the interrupts because

the interrupt routines are not available while the ROM is

switched off. After the contents at the target address are

updated, the interrupts are re-enabled.

730 LDX #$34 ; RAM CONFIGURATION

740 SEI ; INHIBIT INTERRUPTS

750 STX *1

760 ORA (SUML),Y

770 STA (SUML),Y ; SET POINT

780 LDX #$37 ; ROM CONFIGURATION

790 STX *1

800 CLI ; ENABLE INTERRUPTS

810 RTS

820 .EN

Here is the complete assembly listing of all of the routines

that we've talked about in this chapter:

00FA

00FB

00FC

00FD

C460

C460

C462

85

86

FA

FB

100

110

120

130

140

150

160

XL

XH

SUML

SUMH

=

=

* =

STA

STX

$FA

$FB

$FC

$FD

$C460

*XL

*XH ; SAVE X-COORDINATE

165

The Machine Language Book of the Commodore 64

C464

C465

C467

C469

C46B

C46D

C46F

C471

C473

C475

C477

C478

C47A

C47C

C47E

C480

C482

C484

C486

C488

C48A

C48C

C48E

C490

C491

C493

C494

C496

C498

C49A

C49C

C49E

C49F

C4A1

C4A3

C4A5

C4A7

C4A9

C4AB

C4AD

C4AE

C4B0

C4B2

C4B4

C4B6

C4B8

C4BA

C4BC

C4BE

C4C0

C4C1

C4C3

C4C4

C4C6

C4C7

98

29

85

85

A9

85

06

26

06

26

18

A5

65

85

A5

69

85

06

26

06

26

06

26

98

29

18

65

85

A5

69

85

18

A5

29

65

85

A5

65

85

18

A9

65

85

A9

65

85

A5

29

49

AA

A9

CA

30

0A

DO

F8

FE

FC

00

FD

FC

FD

FC

FD

FC

FE

FC

FD

00

FD

FC

FD

FC

FD

FC

FD

07

FC

FC

FD

00

FD

FA

F8

FC

FC

FB

FD

FD

00

FC

FC

EO

FD

FD

FA

07

07

01

03

FA

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680 SHIFT

690

700

710

TYA

AND

STA

STA

LDA

STA

ASL

ROL

ASL

ROL

CLC

LDA

ADC

STA

LDA

ADC

STA

ASL

ROL

ASL

ROL

ASL

ROL

TYA

AND

CLC

ADC

STA

LDA

ADC

STA

CLC

LDA

AND

ADC

STA

LDA

ADC

STA

CLC

LDA

ADC

STA

LDA

ADC

STA

LDA

AND

EOR

TAX

LDA

DEX

BMI

ASL

BNE

; Y-COORDINATE

#$F8

*$FE

*SUML

#0

*SUMH

*SUML

*SUMH

*SUML

*SUMH
; ERASE CARRY

*SUML
*$FE

*SUML

*SUMH

#0

*SUMH

*SUML

*SUMH

*SUML
*SUMH

*SUML
*SUMH

; Y-COORDINATE

#7

*SUML

*SUML

*SUMH

#0

*SUMH

*XL

#$F8

*SUML

*SUML

*XH

*SUMH

*SUMH

#<$E000

*SUML
*SUML

#>$E000

*SUMH

*SUMH

*XL

#7

#7

#1

OK

A

SHIFT

166

The Machine Language Book of the Commodore 64

C4C9

C4CB

C4CD

C4CE

C4D0

C4D2

C4D4

C4D6

C4D8

C4D9

AO

A2

78

86

11

91

A2

86

58

60

00

34

01

FC

FC

37

01

7 20 OK

730

740

750

760

770

780

790

800

810

820

LDY

LDX

SEI

STX

ORA

STA

LDX

STX

CLI

RTS

.EN

#0

#$34

*1

(SUML),Y

(SUML),Y

#$37

*1

C460 / C4DA / 007A

SOURCE FILE IS EXAMPLE 3.SRC

0 ERRORS

OK

XH

C4C9

00FB

SHIFT C4C3

XL 00FA

SUMH 00FD SUML OOFC

Now to try out these routines, we can type this short BASIC

program to call the high resolution graphics:

100 SYS 50176 : REM GRAPHICS ON

110 SYS 50208 : REM ERASE GRAPHIC IMAGE

120 POKE 780,16 : REM BLACK/WHITE
130 SYS 50240 : REM INITIALIZE COLOR

140 FOR X=0 TO 319

150 POKE 780rX AND 255 : REM X-LO

160 POKE 781,X / 256 : REM X-HI

170 POKE 782fX * 0.625 : REM Y

180 SYS 50272 : SET POINT

190 NEXT

200 GET A$: IF A$="M THEN 200

210 SYS 50192 : REM TURN OFF

RUNning this program draws a diagonal line from the upper

left to the lower right corner. Pressing a key returns the

Commodore 64 to the normal text mode.

Now consider how a point can be erased. The routine to

calculate the target address is the same for setting or for

167

The Machine Language Book of the Commodore 64

erasing a point. By changing line 760, you can cause the

routine to erase a pixel instead of setting it. Look at what

happens when you set a point with ORA.

previous bit pattern % 01001000

pattern for new pixel % 00010000

result of ORA % 01011000

The new point is set by using an ORA instruction. To erase

the same point use the AND instruction.

previous bit pattern % 01011000

pattern for pixel to be erased % 00010000

result of AND % 00010000

Something is wrong here! All the points are erased except

for the one you want to erase. The bit values must be

inverted prior to ANDing. You can can do this with the EOR

intruction.

pixel to be erased % 00010000

invert all bits % 11111111

gives the new pattern % 11101111

Except for the point to be erased, all the bits are now set

and the AND operation with the original value works.

previous bit pattern % 01011000

new pattern % 11101111

correct pattern % 01001000

168

The Machine Language Book of the Commodore 64

Now add the erase function to the other routines. You can

use the carry flag to signal whether the point is to be set

or erased. If the carry flag is clear, then the routine

erases the pixel. The routine must make note of the

condition of the carry flag. Use the PHP instruction to save

the status register on the stack, as in line 145. Examine

the flags by using a PLP instruction in line 735. Here are

the remaining changes to the program:

760 BCC ERASE

770 ORA (SUML),Y

780 BCS OK2

790 ERASE EOR #$FF ; INVERT

800 AND (SUML),Y

810 OK2 STA (SUML)

8 20 LDX #$37

830 STX *1

840 CLI

850 RTS

860 .EN

If the carry flag is clear, jump to line 790 where the bits

are inverted with EOR #$FF. The AND instruction is executed

and the result is stored. If, on the other hand, the carry

flag is set, then the bit is set with ORA as before and the

new value is again stored at the target address. The

complete listing is shown below:

00FA

00FB

00FC

00FD

C460

C460

C461

C463

C465

85 FA

86 FB

98

100

110

120

130

140

145

150

160

170

XL

XH

SUML

SUMH

=

=

=

=

*_

PHP

STA

STX

TYA

$FA

$FB

$FC

$FD

$C460

*XL

*XH ; X-COORDINATE

; Y-COORDINATE

169

The Machine Language Book of the Commodore 64

C466

C468

C46A

C46C

C46E

C470

C472

C474

C476

C478

C479

C47B

C47D

C47F

C481

C483

C485

C487

C489

C48B

C48D

C48F

C491

C492

C494

C495

C497

C499

C49B

C49D

C49F

C4A0

C4A2

C4A4

C4A6

C4A8

C4AA

C4AC

C4AE

C4AF

C4B1

C4B3

C4B5

C4B7

C4B9

C4BB

C4BD

C4BF

C4C1

C4C2

C4C4

C4C5

C4C7

C4C8

C4CA

29

85

85

A9

85

06

26

06

26

18

A5

65

85

A5

69

85

06

26

06

26

06

26

98

29

18

65

85

A5

69

85

18

A5

29

65

85

A5

65

85

18

A9

65

85

A9

65

85

A5

29

49

AA

A9

CA

30

0A

DO

A0

F8

FE

FC

00

FD

FC

FD

FC

FD

FC

FE

FD

FD

00

FD

FC

FD

FC

FD

FC

FD

07

FC

FC

FD

00

FD

FA

F8

FC

FC

FB

FD

FE>

00

FC

FC

E0

FD

FD

FA

07

07

01

03

FA

00

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680 SHIFT

690

700

710

720 OK

AND

STA

STA

LDA

STA

ASL

ROL

ASL

ROL

CLC

LDA

ADC

STA

LDA

ADC

STA

ASL

ROL

ASL

ROL

ASL

ROL

TYA

AND

CLC

ADC

STA

LDA

ADC

STA

CLC

LDA

AND

ADC

STA

LDA

ADC

STA

CLC

LDA

ADC

STA

LDA

ADC

STA

LDA

AND

EOR

TAX

LDA

DEX

BMI

ASL

BNE

LDY

#$F8

*$FE

*SUML

#0

*SUMH

*SUML

*SUMH

*SUML

*SUMH

; ERASE CARRY

*SUML

*$FE

*SUML

*SUMH

#0

*SUMH
*SUML

*SUMH
*SUML

*SUMH

*SUML

*SUMH
; Y-COORDINAT

#7

*SUML

*SUML

*SUMH
#0

*SUMH

*XL

#$F8

*SUML

*SUML

*XH
*SUMH

*SUMH

#<$E000

*SUML

*SUML

#>$E000

*SUMH

*SUMH

*XL
#7

#7

#1

OK

A

SHIFT

#0

170

The Machine Language Book of the Commodore 64

C4CC

C4CE

C4CF

C4D0

C4D2

C4D4

C4D6

C4D8

C4DA

C4DC

C4DE

C4E0

C4E2

C4E3

C460

A2 34

28

78

86 01

90 04

11 FC

BO 04

49 FF

31 FC

91 FC

A2 37

86 01

58

60

/ C4E4

SOURCE FILE

0 ERRORS

ERASE

SUMH

C4D8

00FD

730

735

740

750

760

770

780

790 ERASE

800

810 OK2

820

830

840

850

860

/ 0084

IS EXAMPLE 4.SRC

OK C4CA

SUML 00FC

LDX

PLP

SEI

STX

BCC

ORA

BCS

EOR

AND

STA

LDX

STX

CLI

RTS

.EN

#534

*1
ERASE

(SUML)fY

OK2

#$FF
(SUML)fY

(SUML),Y

#$37

*1

OK2 C4DC

XH 00FB

SHIFT

XL

C4C4

00FA

Now change the previous BASIC "test" program:

100 SYS 50176 : REM GRAPHICS ON

110 SYS 51208 : REM ERASE GRAPHIC IMAGE

120 POKE 780,16

130 SYS 50240 : REM SET COLOR

140 1=1

150 FOR X=0 TO 319

160 POKE 780, X AND 255 : REM X LO

170 POKE 781, X AND 255 : REM X HI

180 POKE 782, X * 0.625 : REM Y

190 POKE 783, I : REM SET/ERASE

200 SYS 50272 : NEXT

210 GET A$: IF A$="" THEN 1=1-1 : GOTO 150

220 SYS 50192 : REM GRAPHICS OFF

This program draws a diagonal line across the screen and

then erases it again. The routine determines if a pixel is

to be set or erased, by the condition of the carry flag

which is passed in memory location 783. Because the carry

flag occupies bit position zero within the status register,

the corresponding values are one and zero.

171

The Machine Language Book of the Commodore 64

You can stop the program by pressing a key. The original

screen contents is preserved, just as the graphics screen is

also preserved. When you want to switch back to high

resolution graphics mode, simply call the routine to erase

the screen and you can start anew. Now you can experiment

some more with the routine for the color representation.

100 SYS 50176 : REM GRAPHICS ON

110 SYS 51208 : REM ERASE GRAPHICS

120 POKE 780,16

130 SYS 50240 : REM SET COLOR

140 REM

150 FOR X=70 TO 150 : FOR Y=X TO 199

160 POKE 780, X : REM X LO

170 POKE 781, 0 : REM X HI

180 POKE 78 2, Y : REM Y

190 POKE 783, 1 : REM SET

200 SYS 50272 : NEXT : NEXT

210 FOR C=0 TO 255

220 FOR 1=1 TO 500 : NEXT

230 POKE 780, C

240 SYS 50240 : REM COLOR

250 NEXT

260 SYS 50192 : REM GRAPHICS OFF

This program draws a figure and then displays it in all of

the 256 possible color combinations.

To summarize, you have learned about indirect indexed

addressing? you have worked with the logical operations to

set and erase designated bits; you have also used the stack

for storing data; and you have performed 16-bit additions

and shifts.

An important programming concept still missing is the use of

subroutines. This is discussed in the next section.

172

The Machine Language Book of the Commodore 64

8. Extending BASIC

In the previous section we passed parameters to the graphics

routine by means of POKE commands. Now we present a more

elegant way of doing this.

This technique passes parameters the same way as parameters

are passs to the BASIC commands.

Let's take a simple BASIC command:

POKE A, B

The variables A and B are arguments for the POKE command.

The rules of BASIC allow you to use any expressions,

constants or subscripted variables in place of A and B. For

example, the following is a legal BASIC statement:

POKE A(1000)/750*INT(X%/9),EXP(ABS(SIN(3*A)))+2

The BASIC interpreter uses a routine in its ROMs to evaluate

the value of the expressions. You can let the BASIC

interpreter do hard evaluation work by calling this routine

from your own programs. In addition, you can perform range

checking by using various entry points to the BASIC ROM

routines.

When evaulating the arguments for the POKE routine, for

173

The Machine Language Book of the Commodore 64

example, the routines check to make sure that the first

parameter is a value between 0 and 65535 (16-bit). If not,

the error message ILLEGAL QUANTITY is issued. The routines

then check the second parameter for a value between 0 to

255, and the same error message is given if it fails this

test.

How can you use these routines in your own programs?

First you must understand a programming technique that we

have not discussed up to this point - the subroutine.

You have probably used subroutines when programming in

BASIC. The corresponding commands in BASIC are:

GOSUB and RETURN

The GOSUB command branches to a given line. It differs from

the GOTO instruction in that the interpreter remembers the

place from which it branched. When the subroutine is

finished, and the interpreter encounters a RETURN, the

previously saved return address is fetched and execution

branches back to the place from where the subroutine call

was made.

The 6510 microprocessor has two instructions for managing of

subroutines. These commands correspond exactly to their

BASIC counterparts.

174

The Machine Language Book of the Commodore 64

JSR and RTS

JSR (jump to subroutine) calls the subroutine while the RTS

instruction (return from subroutine) takes care of branching

back to the calling routine. When do you use these

instructions?

Subroutines in machine language programs are used in the

same circumstances as in BASIC. If a certain routine is to

be used more than once, it should be made into a subroutine.

What does the processor do when it encounters a JSR instruction?

Before it branches to the subroutine, it saves the current

address of the program counter so that it knows where to

return after the subroutine is complete. Where does it save

this information? It uses the stack!

A subroutine call saves the current address (two bytes) of

the program counter on the stack. Later, when the RTS

instruction is encountered, the address on the stack

replaces the program counter contents. The instruction

following the JSR is then executed.

So that the 6510 knows at which place on the stack to save

to and retrieve from, there is a register called the stack

pointer (shortened to SP). This register is a pointer to the

175

The Machine Language Book of the Commodore 64

current position of the stack. Let's see what happens when

the JSR and RTS commands are executed.

C000 20 00 Cl JSR $C100

C003

C100 60 RTS

When this program is started at address $C000f a call is

made to the subroutine at address $C100. In our example, the

RTS instruction is encountered immediately and the processor

returns to the instruction following the subroutine call,

which is $C003 in our case. Let's see what happens to the

stack and the stack pointer.

Address Instruction Stack pointer Stack

$C000 JSR $C100 $F9 $O1F9 XX

The data from any previous operations is located at stack

address $01F9. When the processor encounters the JSR

instruction, it takes the contents of the program counter,

increments it by two and divides it into low and high bytes.

It takes the high-byte and stores it at the address to which

the stack pointer points. The stack pointer is then

decremented by one:

Address Instruction Stack pointer Stack

$C000 JSR $C000 $F8 $O1F9 CO

$01F8 XX

Now the low-byte of the address is saved on the stack and

176

The Machine Language Book of the Commodore 64

the stack pointer is again decremented. The program counter

is then set to the starting address of the subroutine:

Address Instruction Stack pointer Stack

$C100 RTS $F7 $01F9 CO

$O1F8 02

$01F7 XX

So during a JSR, the program counter is saved on the stack

and the stack pointer is decremented by two. The stack

pointer always points to the next free location on the

stack.

The RTS instruction performs these functions in reverse.

First the stack pointer is incremented and then the low-byte

is fetched from the stack:

Address Instruction Stack pointer Stack

$C100 RTS $F8 $01F9 CO

$01F8 02

$01F7 XX

The value $02 is placed into the low-byte of the program

counter. Then stack pointer is incremented:

Address Instruction Stack pointer Stack

$C100 RTS $F9 $01F9 CO

$01F8 02

$01F7 XX

SCO is pulled from the stack and becomes the high-byte of

the program counter. The program counter now contains $C002.

177

The Machine Language Book of the Commodore 64

The program counter is incremented by one and the next

instruction is fetched from $C003:

Address Instruction Stack pointer Stack

$C003 ... $F9 $01F9 CO

$01F8 02

$01F7 XX

Notice that the stack pointer contains the same value after

the return from the subroutine as before the call.

It is also possible to nest subroutines with this technique.

If a subroutine is called from another subroutines, its

return address is saved on the stack. The stack pointer is

set to $F5 in our example. The last return address is

fetched by the next RTS instruction and the stack pointer is

incremented to $F7. RTS will always jumps back to the

address of the last subroutine call. Through this, it is

possible to nest levels of subroutines.

The 6510 microprocessor can save and retrieve the contents

of the accumulator and the processor stack register to and

from the stack. The commands are PHA and PLA for the

accumulator and PHP and PLP for the status register. These

commands also affect the stack pointer. Using these

instructions you can, for example, save the contents of the

status register and later retrieve it. Thus the stack can be

used as a "scratchpad".

178

The Machine Language Book of the Commodore 64

PHA ; accumulator to stack

TYA

PHA ; and Y register

TXA

PHA ; and X register

• • •

PLA

TAX ; get X register back

PLA

TAY ; and Y register

PLA ; and accumulator

The X and Y registers cannot be saved directly onto the

stack. You have to transfer the contents of the the X-

register or Y-register to the accumulator first and then

placed the contents to the stack with a PHA instruction.

Notice that the registers must be pulled from the stack in

the reverse order they were pushed on. This is in accordance

with to the principle of the stack. The last value place on

the stack is the first value retrieved from the stack - in a

last in-first out (LIFO) order.

The operation of the stack and the stack pointer can be

illustrated by the single-step simulator. After each step,

you can observe the contents of the registers. The simulator

becomes a very useful learning tool.

Now let's can return to our discussions about the BASIC

interpreter routines for passing parameters.

A routine called GETBYT in the BASIC ROMs, reads an

expression from BASIC text, checks it for a range from 0 and

255, and returns this value in the X-register.

The Machine Language Book of the Commodore 64

Another routine called FRMNUM, converts a expression to 16-

bit (0 to 65535) values.

The routine GETADR, checks an expression for a range from 0

to 65535. If it is valid, the low-byte of the value is

returned in memory location $14 and the high-byte of the

value is returned in memory location $15. The addresses of

these routines are listed below.

Earlier we talked about how the BASIC interpreter reads each

line character by character in order to find the BASIC

keywords. In doing so, BASIC keeps track of its place in the

line by using an internal variable called TXTPTR (for text

pointer). At any given time, TXTPTR points to the BASIC text

which the interpreter is processing.

If you want to pass a parameter from a BASIC program to a

machine language routine, you can use the BASIC command:

SYS AAAAA,PPP

AAAAA is the decimal address of the machine language

routine. PPP is the parameter that you are passing to the

machine langauge routine.

If you want to pass several parameters, you must separate

these parameters from each other with commas. The BASIC

interpreter has a routine to check for commas This routine

180

The Machine Language Book of the Commodore 64

is called CHKCOM and checks to see if TXTPTR is pointing to

a comma.

If you want to read a character directly from the BASIC

text, the routine CHRGOT gets the character pointed to by

TXTPTR and puts it into the accumulator. The routine CHRGBT

does the same thing but first increments TXTPTR before

getting the character.

These routines also set certain flags which give additional

information about the character read. If the zero flag is

set, then either a zero byte (end-of-line in BASIC programs)

or a colon ":" was read, indicating the end of the

statement. If a digit is read, the carry flag is clear.

Here is a summary of the addresses:

GETBYT

FRMNUM

GETADR

CHKCOM

CHRGOT

CHRGET

GETPAR

$B79E

$AD8A

$B7F7

$AEFD

$0079

$0073

$B7EB

To get a 16-bit parameter followed by an 8-bit parameter

such as for the POKE command, you can use the routine

GETPAR. The routine GETPAR calls the following routines in

order: FRMNUM, GETADR, CHKCOM, and GETBYT.

You can use GETPAR for the bit-mapped graphics routines

181

The Machine Language Book of the Commodore 64

because the value for the X-coordinate is a 16-bit number

(0-319) and the value for the Y-coordinate (0-199) is an 8-

bit number. If the values exceed 65535 or 255, respectively,

the BASIC interpreter responds with ILLEGAL QUANTITY. So

GETPAR checks the ranges of the coordinates and display this

error message if required.

To use these routines for parameter passing, a call would

look like this:

SYS 50240,X,Y

When BASIC encounters this statement, it sets up to execute

the machine language routine beginning at memory location

50240. The BASIC TXTPTR is left pointing at the first comma

following the 50240.

Using this technique, you do not have to POKE the parameters

into memory. The program is also a lot easier to follow.

Now let's reprogram the graphics routines again, but

incoprorating the new techniques:

100 JSR CHKCOM ; COMMA FOLLOWING?

110 JSR GETPAR ; GET COORDINATES

120 STX YCOOR ; SAVE Y-COORDINATE

130 LDA $14

140 STA XL ; X-COORDINATE LO

150 LDA $15

160 STA XH

182

The Machine Language Book of the Commodore 64

First we check for a comma which separates the SYS address

from the X-coordinate. Next we use the routine which gets

two parameters, GETPAR. The value of the one-byte parameter,

the Y-coordinate, is returned in the X-register which we

save at the address YCOOR. The value of the second

parameter, the X-coordinate returned in $14/$15 and saved in

XL and XH. Now check that the X and Y-coordinates lie in the

permitted value range. If the Y-coordinate is less than 200,

it is legal, otherwise display ILLEGAL QUANTITY. The same

type of range checking is performed for the X-coordinate.

170 CPX #200 ; Y >= 200?

180 BCC OK

190 ERROR JMP ILLEGAL

200 OK LDA XH

210 CMP #>320

220 BCC OKI

230 BNE ERROR

235 LDA XL

240 CMP #<320

250 BCS ERROR

260 OKI .. .

The remainder of the program is the same as the earlier

version.

183

The Machine Language Book of the Commodore 64

9, Input/Output Operations

In BASIC you use specific commands to input characters from

the keyboard, display them on the screen and communicate

with peripherals. Some of the BASIC commands to do this are:

OPEN

CMD

PRINT#

INPUT#

CLOSE

In machine language programming you use similar techniques.

The operating system already contains routines which

correspond to the BASIC commands above. You can use these

routines to perform input or output operations.

Some of the routines follows:

OPEN

This routine requires three parameters: the logical file

number, the device address, and the secondary address, and

an optional filename. These parameters are set by the

routines SETFLS and SETNAM. The OPEN routine itself needs no

parameters but it does require a prior calls to the other

routines.

184

The Machine Language Book of the Commodore 64

SETFLS

To use SETLFS, load the accumulator with the logical

filenumber, the X-register with the device number, and the

Y-register with the secondary address and then call this

routine to set these parameters for the OPEN routine.

SETNAM

This routine is defines a filename. Load the accumulator

with the of the filename (0 indicates that no filename will

be used); place the address of the filename (the first

memory location it is stored in) in the X-registser (low-

byte) and Y-register (high-byte).

PRINT

Load the accumulator with the character you wish to output

and then call this routine. Normally the output goes to the

screen. If you want to output to the printer, for example,

you must first open a file to the printer (device 4) with

the OPEN routine and then call the next routine.

185

The Machine Language Book of the Commodore 64

CHKOUT

This routine corresponds to the CMD instruction in BASIC. To

output a character to an opened file, load the X-register

with the logical file number and call the subroutine CHKOUT.

All output from the PRINT instruction is sent to this device

until cancelled with the next routine.

CLRCH

CLRCH cancels the CMD mode set by the CHKOUT instruction. It

requires no parameters.

INPUT

This routine gets a character from the keyboard and returns

it in the accumulator. To read data from a file, first open

and then activate it with the next routine.

CHKIN

Load the logical file number in the X-register and call this

routine. After calling this routine, all input is read from

this device until cancelled with CLRCH.

186

The Machine Language Book of the Commodore 64

CLOSE

Load the logical file number into the accumulator and call

this routine to close a file.

The following table contains the addresses of these

routines.

Routine Address

OPEN

SETFLS

SETNAM

PRINT

CHKOUT

CLRCH

INPUT

CHKIN

CLOSE

$FFC0

$FFBA

$FFBD

$FFD2

$FFC9

$FFCC

$FFCF

$FFC6

$FFC3

To demonstrate how to use these routines, let's convert the

following BASIC commands to machine language:

OPEN 1,8,15

PRINT# 1,"I"

CLOSE 1

100 LDA #1 ; LOGICAL FILE NUMBER

110 LDX #8 ; DEVICE NUMBER

120 LDY #15 ; SECONDARY ADDRESS

130 JSR SETFLS

140 LDA #0

150 JSR SETNAM ; NO NAME

160 JSR OPEN ; OPEN FILE

170 LDX #1 ; LOGICAL FILE NUMBER

180 JSR CHKOUT ; OUTPUT TO FILE

190 LDA #73 ; "I"

200 JSR PRINT

210 JSR CLRCH

220 LDA #1 ; LOGICAL FILE NUMBER

230 JSR CLOSE

240 RTS

187

The Machine Language Book of the Commodore 64

Lines 100 to 130 setup the parameters for the OPEN. There is

no filename, so the length of the filename is set to zero in

line 140 to 150. Line 160 OPENS the file. Now output to the

logical file 1 is enabled (lines 170-180) and the ASCII

value of "I" is transmitted to the disk (device 8) by the

PRINT routine to initialize the diskette. Routine CLRCH,

redirects output to the screen. Finally, lines 220 and 230

CLOSES the file and execution returns to BASIC (or other

calling program) with the RTS.

The next example, reads the error channel of the disk drive

and display the error message on the screen. You can do this

in BASIC like this:

100 OPEN 1,8,15

110 INPUT#1, A,B$fC,D

120 PRINT A; B$; C; D

130 CLOSE 1

Because we can output the error message directly to the

screen, we need no variables in our program. We simply read

characters from the channel until the status variable ST, is

equal to 64, signaling the end of the error message. We can

do this with the following BASIC program:

100 OPEN 1,8,15

110 GET#1, A$: PRINT A$;

120 IF ST <> 64 THEN 110

130 CLOSE 1

To do this in machine language, you must know that the

188

The Machine Language Book of the Commodore 64

status variable of the operating system STf is stored in

location 144 or $90. Let's try the machine language version:

10 OPEN = $FFC0

20 SETFLS = $FFBA

30 SETNAM = $FFBD

40 PRINT = $FFD2

50 CLRCH = $FFCC

60 INPUT = $FFCF

70 CHKIN = $FFC6

80 CLOSE = $FFC3

90 STATUS = $90 ; STATUS VARIABLE

100 LDA #1 ; LOGICAL FILE NUMBER

110 LDX #8 ; DEVICE NUMBER

120 LDY #15 ; SECONDARY ADDRESS

130 JSR SETFLS

140 LDA #0

150 JSR SETNAM ; NO NAME

160 JSR OPEN ; OPEN FILE

170 LDX #1 ; LOGICAL FILE NUMBER

180 JSR CHKIN ; INPUT FROM ERROR CHANNEL

190 LI JSR INPUT ; GET CHARACTER

200 JSR PRINT ; AND OUTPUT

210 BIT STATUS ; TEST STATUS

220 BVC LI

230 JSR CLRCH ; INPUT FROM DEFAULT

240 LDA #1

250 JSR CLOSE

260 RTS

270 .EN

The routine from the previous program for OPENing the file

is the same. This time, we input data from the file. Lines

170 and 180 setup to do this. The X-register is loaded with

the logical file number 1 and the routine CHKIN is called.

Input is now read from the disk drive. Line 190 reads a

character from the disk and line 200 writes it to the screen

with JSR PRINT. The output goes to the screen because we did

not previously use CHKOUT. The status variable ST is tested

with the BIT instruction. If the end of the file is reached,

status variable ST is set to 64. 64 is equal to 26 or

189

The Machine Language Book of the Commodore 64

%01000000 in binary. Therefore bit 6 of this memory location

is set at end of file. What does the BIT instruction do? It

copies bit 6 of the addressed memory location into the V

flag and bit 7 into the N flag. After the BIT instruction,

you need only test to see if the V flag is set. The

instruction BVC branches if the V flag is clear, in this

case, the end has not been reached and we branch back to the

read more from the disk. If the V flag is set, we reset the

input channel with JSR CLRCH and close the file.

Assemble this program and try it out. Remember, however,

that our assembler allows a maximum of only five characters

for symbol names.

10:

20:

30:

40:

50:

60:

70:

80:

90:

100:

110:

120:

130:

140:

150:

160:

170:

180:

190:

200:

210:

220:

230:

240:

250:

260:

cooo

cooo

COOO

COOO

COOO

COOO

COOO

COOO

cooo

cooo

C002

C004

C006

C009

C00B

COOE

con

C013

C016

C019

C01C

C01E

C020

C023

C025

C028

A9

A2

A0

20

A9

20

20

A2

20

20

20

24

50

20

A9

20

60

01

08

OF

BA

00

BD

CO

01

C6

CF

D2

90

F6

CC

01

C3

FF

FF

FF

FF

FF

FF

FF

FF

OPEN

SETFLS

SETNAM

PRINT

CLRCH

INPUT

CHKIN

CLOSE

STATUS

LI

=

=

=

=

=

—

LDA

LDX

LDY

JSR

LDA

JSR

JSR

LDX

JSR

JSR

JSR

BIT

BVC

JSR

LDA

JSR

RTS

$FFC0

$FFBA

$FFBD

$FFD2

$FFCC

$FFCF

$FFC6

$FFC3

$90

#1

#8

#15

SETFLS

#0

SETNAM

OPEN

#1

CHKIN

INPUT

PRINT

STATUS

LI

CLRCH

#1

CLOSE

;LOGICAL FILE NUMBER

;DEVICE NUMBER

;SECONDARY ADDRESS

;NO FILENAME

;OPEN FILE

;INPUT

)FROM ERROR CHANNEL

;CHARACTER FROM DISK

;AND OUTPUT

;TEST STATUS

;CLOSE FILE

190

The Machine Language Book of the Commodore 64

Now you can try out the machine language routine by typing:

SYS 49152

The error message from the disk appears on the screen, such

as:

00, OK,00,00

191

The Machine Language Book of the Commodore 64

10. A BASIC Loader Program

You can enter the machine language program as a sequence of

numbers in DATA statements. They can be READ by a BASIC

program and stored in memory with POKE, You can output the

values in decimal by means of a small BASIC program and

insert these as DATA statements in a loader program. Here is

a program written in BASIC, which does this automatically.

It is used as follows. First load your machine language

program. Then type in the following BASIC program and RUN

it. You are now asked to enter the starting and ending

addresses of the machine language program. The program

creates a complete loader program on the printer with an

automatically generated checksum. The checksum is simply the

sum of all the values. The values are summed while being

loaded and the checksum contained within the program is

checked against the value generated by the program. If the

two values aren't equal, an appropriate message is

displayed.

By doing this you can determine if the user made an error

while typing in the data.

100 OPEN 1,4 : Z = 100

110 INPUT "START ADDRESS ";A

120 INPUT "END ADDRESS ";E

130 CMD1 : PRINT Z "FOR I =" A "TO" E

140 I=A : Z=Z+10 : PRINT Z "READ X : POKE I,X : S=S+X : NEXT"

150 Z=Z+10 : N=0 : PRINT Z "DATA ";

192

The Machine Language Book of the Commodore 64

160 X=PEEK(I) : S=S+X : PRINT RIGHT$(" "+STR$(X),3);:N=N+1

170 IF I=E THEN PRINT : GOTO200

180 1=1+1:IF N=12 THEN PRINT:GOTO150

190 PRINT "r";:GOTO160

200 PRINT Z+10 "IF SO" S "THEN PRINT" CHR$(34) "ERROR

IN DATA II" CHR$(34) : PRINT " : END" : END

210 PRINT Z+20 "PRINT " CHR$(34) "OK" CHR$(34)

220 PRINT#1:CLOSE1

193

The Machine Language Book of the Commodore 64

11. 6510 Disassembler

This section contains a program called a disassembler. The

purpose of a disassembler is to translate machine language

programs in memory back to the mnemonics used for entering

assembly language programs. From the sequence $A9f $80, for

example, the disassembler generates LDA #$80. The

disassembler is simply started with RUN and it asks for the

starting and ending addresses of the memory range to

disassemble. The output then appears on the screen, but it

can be redirected to the printer with an appropriate OPEN

instruction and CMD assignment.

Here's a brief description of the operation of the

disassembler. The program gets a byte from memory and

interprets it as an operation code. This op code serves as

an index in a table of instruction mnemonics, instruction

lengths and addressing modes. The disassembler knows the

form of the operand and where the next instruction begins

from these tables.

The disassembler can be used for your own machine language

programs as well as for the disassembly of the operating

system and BASIC interpreter. You can often find hints and

tips for your own programs there. Better yet is the

commented listing of operating system which you can find in

The Anatomy of the Commodore 64.

194

The Machine Language Book of the Commodore 64

Here is the disassembler listing.

100 REM 6510 DISASSEMBLER

110 DIMMN$<255>,AD<255),H$<15>

120 FF=255: HI =256: UL=2T 16: SC=2 T 15-1

130 PRINT" iCLRy CC/DN3- {C/DN3- {C/DN3- -CC/RT3- <iC/RT3- CC/RT3- {C/RT3 <:C/RT> -CC/R1 >

CC/RIXC/Rt MC/RT3CC/RTMC/RT3-651O DISASSEMBLER"

140 F0RI=0T015:READH*(I):NEXT

150 F0RI=0T0255:READMN*(I>,AD<I):NEXT

160 PRINT" <C/DN3 START ADDRESS:- *****<:C/LF> <C/LF3-IC/LF3-{C/LF3-CC/LF3-

170 G0SUB540:S=A

180 PRINT" CC/DN3-END ADDRESS :- *****<:C/LF3- <:C/LF> -CC/LF3■ CC/LF3•-C.C/LF3

CC/LFJ "; : IN PUTA*: PRINT

190 G0SUB540:E=A

200 F0RP=ST0E

210 A=*P:G0SUB450:REM ADDRESS

220 PRINT" ";:A=PEEK(P):B0SUB480:PRINT" ";:I=PEEK(P):OP-AD(I)

230 0N0PG0SUB510,520,520,510,530,520,520,530,530,520,520,520,530

240 PRINT" ";MN*<I>" ";

250 0N0PG0SUB270,280,290,300,310,320,330,340,350,360,370,380,400

260 NEXTP:GOTO160

270 PRINT:RETURN

280 PRINT"**";:G0SUB490:P=P+1:PRINT:RETURN

290 G0SUB490:P=P+l:PRINT:RETURN

300 PRINT" A":RETURN

310 G0SUB420:P=P+2:PRINT:RETURN

320 G0SUB490:P=P+1:PRINT",X":RETURN

330 G0SUB490:P=P+1:PRINT",Y":RETURN

340 G0SUB420:P=P+2:PRINT",X":RETURN

350 G0SUB420:P=P+2:PRINT",Y" : RETURN

360 PRINT"(";:G0SUB490:P=P+1:PRINT"),Y":RETURN

370 PRINT"<";:G0SUB490:P=P+l:PRINT",X)":RETURN

380 T=PEEK(P+1):Q=T+HI* < T>127)+2+P

390 A=INT(Q/HI)*HI+((Q+(Q>SC)*UL> ANDFF):PRINT"*";:GOSUB4f5O:P=P+1:

400 PRINT"(";:G0SUB420

410 PRINT">":P=P+2:RETURN

420 PRINT"*";

430 A=PEEK(P+1)+HI*PEEK(P+2)

440 REM HEX ADDRESS A

450 HB=INT(A/HI):A=A-HI*HB

460 PRINTH$<HB/16)H$(HBAND15>;

470 REM HEX BYTE A

480 PRINTH*<A/16)H*<AAND15>;:RETURN

490 PRINT"*";

500 A=PEEK(P+1):GDT0480

510 PRINT" ";:RETURN

520 G0SUB500:PRINT" ";:RETURN

530 G0SUB500:PRINT" "5:A«PEEK<P+2):GDT0480

540 IFASC(A*)=42THENEND

550 A=O:FORI = 1TO4:V=ASC(RIGHT*(A*,I)) -40: V=V+ (V>9) *7: A=AW* (161

U-l) > :NEXf:REIURN

1000 DATA 0,l,2,3,4,5,6,7,8,9,A,B,C,D,E,h

1010 DATA"BRK",1,"ORA",11,"???",l

1020 DATA"???" , 1 , "???•' , 1 , "ORA" , 3

1030 DATA"ASL",3,"???",1,"PHP",1

1040 DATA"ORA",2,"ASL",4,"???",1

1050 DATA"???",!,"ORA",5,"ASL",5

195

The Machine Language Book of the Commodore 64

1060 DATA"???",1,"BPL",12,"ORA",10

1070 DATA"???" , 1 , '•???" , l , »???•• i i

1080 DATA"ORA" , 6 , "ASL",6,"???",1

1090 DATA"CLC",1,"ORA",9,"???",1

1100 DATA"???",1,"???",1,"ORA",8

1110 DATA"ASL",8,"???",1,"JSR",5

1120 DATA"AND" ,11, "???" , 1 , »???'• , i

1130 DATA"BIT",3,"AND",3,"ROL",3

1140 DATA"???",1,"PLP",1,"AND",2

1150 DATA"ROL",4,"???",1,"BIT",5

1160 DATA"AND",5,"ROL",5,"???",1

1170 DATA"BMI",12,"AND",10,"???",1

1180 DATA"???",1,"???",1,"AND",6

1190 DATA"ROL",6,"???",1,"SEC",1

1200 DATA"AND",9,"???",1,"???",1

1210 DATA"???",1,"AND",8,"ROL",8

1220 DATA"???",1,"RTI",1,"EOR",11

1230 DATA"???" , 1 , "???" , 1 , ••???■• 71

1240 DATA"EOR",3,"LSR",3,"???",1

1250 DATA"PHA",1,"EOR",2,"LSR",4

1260 DATA"???",1,"JMP",5,"EOR",5

1270 DATA"LSR",5,"???",1,"BVC",12

1280 DATA"EOR",10,"???",1,''777" ?i

1290 DATA"???",1,"EOR",6,"LSR",6

1300 DATA"???",1,"CLI",1,"EOR",9

1310 DATA"???",1,»???»,1,»???"? j

1320 DATA"EOR",8,"LSR",8,"???",1

1330 DATA"RTS" , 1 , "ADC" ,11, '■???» , l

1340 DATA"???",1,"???",1,"ADC",3

1350 DATA"ROR",3,"???",1,"PLA",1

1360 DATA"ADC",2,"ROR",4,"???",1

1370 DATA"JMP",13,"ADC",5,"ROR",5

1380 DATA"???",1,"BVS",12,"ADC",10

1390 DATA"???" , 1 , "???" , 1 , ••???•• , i

1400 DATA"ADC",6,"ROR",6,"???",1

1410 DATA"SEI",1,"ADC",9,"???",1

1420 DATA"???",1,"???",1,"ADC",8

1430 DATA "ROR" ,8, ■•???•■ , 1 , "???", 1

1440 DATA"STA" ,11, "???'• , 1 , "777" , 1

1450 DATA"STY",3,"STA",3,"STX",3

1460 DATA"???" , 1 , "DEY" , 1 , '■???•' , l

1470 DATA"TXA",1,"???",1,"STY",5

1480 DATA "STA" ,5, "STX" ,5, '•???» , 1

1490 DATA"BCC",12,"STA",10,"???",1

1500 DATA"???",1,"STY",6,"STA",6

1510 DATA"STX",7,"???",1,"TYA",1

1520 DATA"STA",9,"TXS",1,"???",1

1530 DATA"???" , 1 , "STA" ,8, "???■• , 1

1540 DATA"???",1,"LDY",2,"LDA",11

1550 DATA"LDX",2,"???",1,"LDY",3

1560 DATA"LDA",3,"LDX",3,"???",l

1570 DATA"TAY",1,"LDA",2,"TAX",1

1.580 DATA"???" , 1 , "LDY" ,5, "LDA" ,5

1590 DATA"LDX",5,"???",1,"BCS",12

1600 DATA "LDA" ,10, "???•' , 1 , -777'' ? 1

1610 DATA"LDY",6,"LDA",6,"LDX",7

1620 DATA"???",1,"CLV",1,"LDA",9

1630 DATA'TSX" , 1 , •'???'■ , l , "LDY" ,8

196

The Machine Language Book of the Commodore 64

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

DATA"LDA"

DATA"CPY"

DATA"???"

DATA"DEC"

DATA"CMP"

DATA"CPY"

DATA"???"

DATA"???"

DATA"CMP"

DATA"CLD"

DATA"???11

DATA"DEC"

DATA"SBC"

DATA"CPX"

DATA"???"

DATA"N0P"

DATA"SBC"

DATA"BEQ"

DATA"???"

DATA"INC"

DATA"SBC"

DATA"???"

DATA"???"

"LDX",9,"???",1

"CMP",11,"???",1

"CPY",3,"CMP",3

"DEX"

"CMP

"BNE

"77'?

"DEC

"CMP

"SBC

"INX

INC

,"SBC

/'???"

, "???

, "SBC

,1,"???",1

,5,"DEC",5

',12,"CMP",10

' ,1,"???",1

',6,"???",1

',9,"???",1

\1,"CMP",8

',1,"CPX",2

?",1,"???",1

',3,"INC",3

\1,"SBC",2

',1,"CPX",5

,5,"???",1

",10,"???",1

,1,"SBC",6

'l,"???"'l
,8,"INC",8

197

The Machine Language Book of the Commodore 64

Program Description

100 - 150 Initialization; build tables

160 - 190 Prompt for starting and ending addresses for the

disassembly and conversion to decimal,

200 - 260 FOR-NEXT loop for disassembly from starting to

ending address. Line 220 gets the instruction

code and the current address is output. Line 230

outputs the operands depending on the address

mode. Line 240 outputs the instruction mnemonic.

Line 250 displays the operand corresponding to

the addressing mode. Line 260 ends the loop and

jumps back to the input.

280 - 410 Output the operand as the address mode dictates.

420 - 530 Output hexadecimal forms of bytes and addresses,

540 - 550 Conversion of a hex number to decimal.

1000 - 1860 Tables containing the instruction mnemonics and

addressing modes.

198

The Machine Language Book of the Commodore 64

Variable Description

MN$(255) Table of instruction words

AD(255) Table of address modes

H$(15) Field with hex digits

FF constant 255

HI constant 256

UL constant 65536

SC constant 32767

A$ string variable for hex number

S start address

E end address

P program counter

OP addressing mode

199

The Machine Language Book of the Commodore 64

12. Using a Machine Language Monitor

Here's another tool to aid in machine language development.

The tool is called a monitor.

A monitor can be used to enter machine language programs.

You can displays and changes the contents of memory

locations and the registers. Additionally, you can save and

load machine language programs to tape or diskette. You can

execute machine language programs from it. If you end such a

program with a BRK instruction, control is returned to the

monitor and the contents of the registers are be displayed.

The following is an explaination of the commands available

with the SUPERMON monitor. SUPERMON is a public domain

monitor written by well know Commodore expert Jim

Butterfield who has given us so many useful tools. SUPERMON

is available free of charge from many sources including most

local user groups. We have explained the use of SUPERMON

beacuse it is so widely available.

SUPERMON is started by LOAD "SUPERMON",8 and activated

with RUN. The monitor responds with:

..JIM BUTTERFIELD

B*

PC SR AC XR YR SP

.; 9835 31 40 E6 00 F6

B indicates that the monitor was entered by "BRK"

200

The Machine Language Book of the Commodore 64

The labels are as follows:

PC program counter

SR status register

AC accumulator

XR x-register

YR y-register

SP stack pointer

The contents of those registers appear below the labels. You

can change the contents of any register by moving the cursor

over the old contents, overwriting it with the new value,

and pressing the <RETURN> key. If you want to change the

flags, the status register must be changed.

SUPERMON uses the period . as its prompt. When you see the

period on the screen, SUPERMON is asking you to enter a

command.

You can display the register contents at any time by

entering R at the prompt:

.R

and pressing the <RETURN> key. The contents of the registers

is displayed, just as above.

The next command displays and allows you to change the

contents of memory. At the prompt, enter M followed by the

first and last address you wish to see. The starting and

ending addresses are entered as four-digit hexadecimal

201

The Machine Language Book of the Commodore 64

numbers such as:

.M AOAO AOAF

. : AOAO C4 46 4F D2 4E 45 58 D4

.: A0A8 44 41 54 Cl 49 4E 50 55

SUPERMON displays the contents memory below your entry. You

can interpret the output in the following way:

An address is displayed after the colon. This is the address

of the first of eight following bytes. In this example,

address $A0A0 contains the value $C4. Address $A0Al contains

$46f and so on. A total of eight bytes are displayed per

line. SUPERMON displays as many lines as specified by the

address range which you entered.

To change a single byte in memory, move the cursor over the

old value, type in the new value, and press the <RETURN>

key.

If you want to execute a program, use the instruction G. If

the program starts at address $CF20, enter

.G CF20

This begins the execution of a machine language program

beginning at the specified address. First, however, the

registers are be loaded with the values displayed with the R

command. The last instruction in the machine language

202

The Machine Language Book of the Commodore 64

program should be BRK which causes execution to return to

the monitor when the program is done. When a BRK is

executed, the register contents are then automatically

displayed, as below:

B*

PC SR AC XR YR SP

.; CF39 B3 8F 73 BO F6

The B indicates that your program ended with a BRK

instruction and that the monitor was entered by means of

this BRK instruction. The program counter points to the byte

immediately after the BRK instruction. If you have several

BRK commands in your program, this information tells you at

which point your program was stopped.

Knowing this, you can develop the following method for

testing and debugging programs. Place BRK instructions at

all of the important locations in the program so that the

program stops at these points. Then check the register

contents and data in memory. If the program has run properly

up to this point, replace the BRK instruction with the

original instruction and place a BRK instruction at the next

critical location. This way you can test your program step

by step until it runs to your satisfaction.

Loading and saving programs is accomplished through the use

of the L and S commands. The following syntax is used:

.L "NAME",XX

203

The Machine Language Book of the Commodore 64

To load a program type the name of the program in

quotation marks followed by a comma separating it the device

address given as a two-digit hex number area . If you want

to load the program GRAPHIC from diskf for example, the

instruction would look like this:

.L "GRAPHIC",08

If you want to load from cassette, you use the device

address 01.

.L "GRAPHICS",01

The SAVE command works the same way. Because the computer

must know the memory range to save, it is necessary to give

a starting and an ending address. The ending address must be

one greater than the last byte you want to save. The command

looks like this:

,S "PROGRAM",08,7000,8000

It writes the memory range from $7000 to $7FFF to the disk

under the name "PROGRAM". Here too the device address 01 can

be entered in order to save to the cassette drive.

Another function of SUPERMON is the built-in disassembler.

By entering D followed by an address range you can display

machine language programs on the screen in disassembled

204

The Machine Language Book of the Commodore 64

format. The format is the same as that used by the

disassembler written earlier in BASIC. If you enter the

following instruction:

.D B824 B82C

the following is displayed:

., B824 20 EB B7 JSR $B7EB

. , B827 8A TXA

., B828 A0 00 LDY #$00

., B82A 91 14 STA ($14) ,Y

., B82C 60 RTS

We disassembled a part of the BASIC interpreter which

performs the POKE command.

Another useful command in SUPERMON allows one area of memory

to be copied to another. Enter the starting and ending

addresses of the area to be copied and the starting address

of the destination area. The contents of the original area

are left unchanged.

.T 6000 6FFF 3000

copies the area from $6000 to $6FFF to the addresses from

$3000 to $3FFF.

Another useful function hunt command. With this command you

205

The Machine Language Book of the Commodore 64

can search for specific values in memory. The results

displayed are the addresses at which those values are found.

.H E000 EFFF 20 D2 FF

searches through the memory range from $E000 to $EFFF for

the values $20f $D2f $FF. This command will display a list

of addresses at which these values were found. In this

example we would see:

E10C

SUPERMON found the values 20 D2 FF at the area of memory

starting at E10C.

Another command fills memory with a particular value. With

this you can fill a range of memory with constant values.

.F 8000 8FFF 00

fills the area from $8000 to $8FFF with zero bytes.

You can use the next command to assemble single lines of

machine language. By entering the following:

.A 0800 LDA #$FF

SUPERMON will assemble the machine language codes A9 FF into

memory beginning at $0800. This function makes it easy to

enter short machine language program.

206

The Machine Language Book of the Commodore 64

The last command exits from SUPERMON and returns you to the

BASIC interpreter. Simply enter:

.X

and the interpreter will respond with READY. If you later

wish to use the monitor again, you can return to it by

entering

SYS 49152

207

The Machine Language Book of the Commodore 64

APPENDIX A -

Addressing Modes and Operation Codes

MNEMONIC -

ADC

AND

ASL

BIT

CMP

CPX

CPY

DEC

EOR

INC

LDA

LDX

LDY

LSR

ORA

ROL

ROR

SBC

STA

STX

STY

A

—

-

OA

-

-

-

-

-

-

-

-

—

-

4A
-

2A

6A

-

-

-

-

#

69

29

-

-

C9

EO

CO
-

49

-

A9

A2

AO

-

09
-

-

E9

-

-

ZP

65

25

06

24

C5

E4

C4

C6

45

E6

A5

A6

A4

46

05

26

66

E5

85

86

84

-ADDRESSING

AB

6D

2D

0E

2C

CD

EC

CC

CE

4D

EE

AD

AE

AC

4E

0D

2E

6E

ED

8D

8E

8C

ABX

7D

3D

IE

-

DD

-

-

DD

5D

FD

BD

_

BC

5E

ID

3E

7E

FD

9D

_

-

ABY

79

39

-

-

D9

-

-

-

59

-

B9

BE

-

-

19
-

-

F9

99

-

-

MODE-

ZPX

75

35

16

-

D5

-

-

D6

55

F6

B5
_

B4

56

15

36

76

F5

95

-

94

ZPY ,X)

61

21

- -

-

Cl
-

- -

- -

41

-

Al

B6 -
- -

- -

01
- -

- -

El

81

96 -
- -

71

31

-

_

Dl

-

-

—

51

-

Bl
_

-

-

11
-

-

Fl

91

-

—

208

The Machine Language Book of the Commodore 64

APPENDIX B

Grouped Instructions

Branch BPL BMI BVC BVS BCC BCS BNE BEO

Instr. 10 30 50 70 90 B0 DO F0

Transfer TXA TAX TYA TAY TSX TXS

Instr. 8A AA 98 A8 BA 9A

Stack PHP PLP PHA PLA

Instr. 08 28 48 68

Jump BRK JSR RTI RTS JMP JMP NOP

Instr. 00 20 40 60 4C 6C EA

Flag CLC SEC CLI SEI CLV CLD SED

Instr. 18 38 58 78 B8 D8 F8

Inc/Dec DEY INY DEX INX

Instr. 88 C8 CA E8

20S>

The Machine Language Book of the Commodore 64

Conversion

Decimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

APPENDIX

Table Decimal -

Hex

00

01

02

03

04

05

06

07

08

09

0A

0B

OC

0D

0E

OF

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

IF

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

Binary

00000000

00000001

00000010

00000011

00000100

00000101

00000110

00000111

00001000

00001001

00001010

00001011

00001100

00001101

00001110

00001111

00010000

00010001

00010010

00010011

00010100

00010101

00010110

00010111

00011000

00011001

00011010

00011011

00011100

00011101

00011110

00011111

00100000

00100001

00100010

00100011

00100100

00100101

00100110

00100111

00101000

00101001

00101010

00101011

00101100

00101101

00101110

00101111

00110000

c

Hexadecimal -

Decimal

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Hex

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

Binary

Binary
00110001

00110010

00110011

00110100

00110101

00110110

00110111

00111000

00111001

00111010

00111011

00111100

00111101

00111110

00111111

01000000

01000001

01000010

01000011

01000100

01000101

01000110

01000111

01001000

01001001

01001010

01001011

01001100

01001101

01001110

01001111

01010000

01010001

01010010

01010011

01010100

01010101

01010110

01010111

01011000

01011001

01011010

01011011

01011100

01011101

01011110

01011111

01100000

01100001

01100010

210

The Machine Language Book of the Cominodore 64

Decimal

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Hex

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

80

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

Binary

01100011

01100100

01100101

01100110

01100111

01101000

01101001

01101010

01101011

01101100

01101101

01101110

01101111

01110000

01110001

01110010

01110011

01110100

01110101

01110110

01110111

01111000

01111001

01111010

01111011

01111100

01111101

01111110

01111111

10000000

10000001

10000010

10000011

10000100

10000101

10000110

10000111

10001000

10001001

10001010

10001011

10001100

10001101

10001110

10001111

10010000

10010001

10010010

10010011

Decimal

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

Hex

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

Al

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

AC

AD

AE

AF

B0

Bl

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

CO

Cl

C2

C3

C4

Binary

10010100

10010101

10010110

10010111

10011000

10011001

10011010

10011011

10011100

10011101

10011110

10011111

10100000

10100001

10100010

10100011

10100100

10100101

10100110

10100111

10101000

10101001

10101010

10101011

10101100

10101101

10101110

10101111

10110000

10110001

10110010

10110011

10110100

10110101

10110110

10110111

10111000

10111001

10111010

10111011

10111100

10111101

10111110

10111111

11000000

11000001

11000010

11000011

11000100

The Machine Language Book of the Commodore 64

Decimal

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

2i4
215

216

217

218

219

220

221

222

223

224

225

226

Hex

C5

C6

C7

C8

C9

CA

CB

CC

CD

CE

CF

DO

Dl

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

E0

El

E2

Binary

11000101

11000110

11000111

11001000

11001001

11001010

11001011

11001100

11001101

11001110

11001111

11010000

11010001

11010010

11010011

11010100

11010101

11010110

11010111

11011000

11011001

11011010

11011011

11011100

11011101

11011110

11011111

11100000

11100001

11100010

Decimal

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Hex

E3

E4

E5

E6

E7

E8

E9

EA .

EB

EC

ED

EE

EF

F0

Fl

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

Binary
11100011

11100100

11100101

11100110

11100111

11101000

11101001

11101010

11101011

11101100

11101101

11101110

11101111

11110000

11110001

11110010

11110011

11110100

11110101

11110110

11110111

11111000

11111001

11111010

11111011

11111100

11111101

11111110

11111111

212

A
P
P
E
N
D
I
X

D

T
a
b
l
e

o
f

6
5
1
0

I
n
s
t
r
u
c
t
i
o
n

C
o
d
e
s

t
o

H U
)

E

0
B
R
R

O
R
A

,
X
)

O
R
A

Z
P

A
S
L

Z
P

P
H
P

O
R
A

*
A
S
L

A
O
R
A

A
B

A
S
L

A
B

1
B
P
L

O
R
A

)
,
Y

O
R
A

Z
P
X

A
S
L

Z
P
X

C
L
C

O
R
A

A
B
Y

O
R
A

A
B
X

A
S
L

A
B
X

2
J
S
R

A
N
D

,
X
)

B
I
T

Z
P

A
N
D

Z
P

R
O
L

Z
P

P
L
P

A
N
D

#
R
O
L

A
B
I
T

A
B

A
N
D

A
B

R
O
L

A
B

3
B
M
I

A
N
D

)
,
Y

A
N
D

Z
P
X

R
O
L

Z
P
X

S
E
C

A
N
D

A
B
Y

A
N
D

A
B
X

R
O
L

A
B
X

4
R
T
I

E
O
R

,
X
)

E
O
R

Z
P

L
S
R

Z
P

P
H
A

E
O
R

I
L
S
R

A
J
M
P

A
B

E
O
R

A
B

L
S
R

A
B

5
B
V
C

E
O
R

)
,
Y

E
O
R

Z
P
X

L
S
R

Z
P
X

C
L
I

E
O
R

A
B
Y

E
O
R

A
B
X

L
S
R

A
B
X

6
R
T
S

A
D
C

,
X
)

A
D
C

Z
P

R
O
R

Z
P

P
L
A

A
D
C

#
R
O
R

A
J
M
P

I
N
D

A
D
C

A
B

R
O
R

A
B

7
B
V
S

A
D
C

)
,
Y

A
D
C

Z
P
X

R
O
R

Z
P
X

S
E
I

A
D
C

A
B
Y

A
D
C

A
B
X

R
O
R

A
B
X

8
S
T
A

,
X
)

S
T
Y

Z
P

S
T
A

Z
P

S
T
X

Z
P

D
E
Y

T
X
A

S
T
Y

A
B

S
T
A

A
B

S
T
X

A
B

9
B
C
C

S
T
A

)
,
Y

S
T
Y

Z
P
X

S
T
A

Z
P
X

S
T
X

Z
P
Y

T
Y
A

S
T
A

A
B
Y

T
X
S

S
T
A

A
B
X

A
L
D
Y

*
L
D
A

,
X
)

L
D
X

#
L
D
Y

Z
P

L
D
A

Z
P

L
D
X

Z
P

T
A
Y

L
D
A

«
T
A
X

L
D
Y

A
B

L
D
A

A
B

L
D
X

A
B

*
p

B
B
C
S

L
D
A

)
,
Y

L
D
Y

Z
P
X

L
D
A

Z
P
X

L
D
X

Z
P
Y

C
L
V

L
D
A

A
B
Y

T
S
X

L
D
Y

A
B
X

L
D
A

A
B
X

L
D
X

A
B
Y

*t
f

C
C
P
Y

*
C
M
P

,
X
)

C
P
Y

Z
P

C
M
P

Z
P

D
E
C

Z
P

I
N
Y

C
M
P

#
D
E
X

C
P
Y

A
B

C
M
P

A
B

D
E
C

A
B

*0
D

B
N
E

C
M
P

)
,
Y

C
M
P

Z
P
X

D
E
C

Z
P
X

C
L
D

C
M
P

A
B
Y

C
M
P

A
B
X

D
E
C

A
B
X

™

E
C
P
X

*
S
B
C

,
X
)

C
P
X

Z
P

S
B
C

Z
P

I
N
C

Z
P

I
N
X

S
B
C

#
N
O
P

C
P
X

A
B

S
B
C

A
B

I
N
C

A
B

g

F
B
E
O

S
B
C

)
,
Y

S
B
C

Z
P
X

I
N
C

Z
P
X

S
E
D

S
B
C

A
B
Y

S
B
C

A
B
X

I
N
C

A
B
X

H X

T
h
e

o
p
e
r
a
t
i
o
n

c
o
d
e
s

c
a
n

b
e

d
e
t
e
r
m
i
n
e
d

f
r
o
m

t
h
e

t
a
b
l
e

a
s

f
o
l
l
o
w
s
:

T
h
e

l
e
f
t
-
m
o
s
t

c
o
l
u
m
n

g
i
v
e
s

t
h
e

h
i
g
h

n
y
b
b
l
e

o
f

t
h
e

o
p
c
o
d
e

w
h
i
l
e

t
h
e

t
o
p

l
i
n
e

g
i
v
e
s

t
h
e

l
o
w

n
y
b
b
l
e

o
f

t
h
e

o
p
c
o
d
e
.

E
x
a
m
p
l
e
:

E
O
R

#
h
a
s

t
h
e

o
p
e
r
a
t
i
o
n

c
o
d
e

$
4
9
.

T
h
e

a
b
b
r
e
v
i
a
t
i
o
n
s

f
o
r

t
h
e

a
d
d
r
e
s
s
i
n
g

m
o
d
e

h
a
v
e

t
h
e

f
o
l
l
o
w
i
n
g

m
e
a
n
i
n
g
s
:

A
b
b
r
e
v
i
a
t
i
o
n

A A
B

A
B
X

A
B
Y

I
N
D

Z
P

Z
P
X

Z
P
Y

* »
X
)

)
,
Y

A
d
d
r
e
s
s
i
n
g

M
o
d
e

a
c
c
u
m
u
l
a
t
o
r

a
b
s
o
l
u
t
e

a
b
s
o
l
u
t
e
,

Y
i
n
d
e
x
e
d

a
b
s
o
l
u
t
e
,

X
i
n
d
e
x
e
d

i
n
d
i
r
e
c
t

z
e
r
o

p
a
g
e

z
e
r
o

p
a
g
e
,

X
i
n
d
e
x
e
d

z
e
r
o

p
a
g
e
,

Y
i
n
d
e
x
e
d

i
m
m
e
d
i
a
t
e

X
i
n
d
e
x
e
d
,

i
n
d
i
r
e
c
t

i
n
d
i
r
e
c
t
,

Y
i
n
d
e
x
e
d

I
n
s
t
r
u
c
t
i
o
n

L
e
n
g
t
h

1 3 3 3 3 2 2 2 2 2 2

The Machine Language Book of the Commodore 64

ADC

AND

ASL

BCC

BCS

BEQ

BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

CPX

CPY

DEC

DEX

DEY

EOR

INC

INX

INY

JMP

JSR

LDA

LDX

LDY

NOP

ORA

OPERATION

Bit map

011XXX01

001XXX01

000XXX10

10010000

10110000

11110000

0010X100

00110000

10010000

00010000

00000000

01010000

01110000

00011000

11011000

01011000

10111000

110XXX01

1110XX00

1100XX00

110XX110

11001010

10001000

010XXX01

000XX110

11101000

11001000

01X01100

00100000

101XXX01

101XXX10

101XXX00

11101010

000XXX01

APPENDIX E

CODES AND FLA

N

X

X

X

M

X

X

X

X

X

X

X

X

X

X

X

X

0

X

V B

X

M

1

0

X

X

X

X

X

X

X

X

X

X

X

X

X

c

X

z

X

X

X X

X

X

X

214

The Machine Language Book of the Commodore 64

*

PHA

PHP

PLA

PLP

ROL

ROR

RTI

RTS

SBC

SEC

SED

SEI

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

Bit map

01001000

00001000

01101000

00101000

001XXX10

011XXX10

01000000

01100000

111XXX01

00111000

11111000

01111000

100XXX01

100XX110

100XX100

10101010

10101000

10111010

10001010

10011010

10011000

N

X

X

X

X

X

X

X

X

X

X

X

X

X X

X X

X X

X X

X X

1

X

X

X

X

If the bit map of a instruction contains one or more Xsf

these bits are dependent on the address mode. An X in a flag

column indicates that that flag is affected by the

instruction. A 0 or 1 means that the flag is cleared or set,

respectively. If no entry is given under a particular flag,

the instruction in question does not affect that flag.

215

The Machine Language Book of the Commodore 64

APPENDIX F

OPTIONAL DISKETTE ORDERING INFORMATION

The listings in this book for the LEA Assembler, 6510

Single-Step Simulator, Disassembler and SUPERMON monitor are

available on a ready to run 1541 Format Diskette,

By purchasing this diskette, you can eliminate typing these

programs into your Commodore 64 from the listings.

The programs on the diskette have been fully tested and are

available for $14.95 + $2.00 ($5.00 foreign) postage and

handling charge.

To order, send name, address and a check, money order or

credit card information to:

ABACUS SOFTWARE

P.O. BOX 7211

GRAND RAPIDS, MI 49510

For fast service, order by phone - 616 / 241-5510.

Be sure to ask for the "Optional Diskette for the Machine

Language Book for the Commodore 64"

916

GETTHE MOST(XJT

XREF-64 BASIC CROSS REFERENCE
This tool allows you to locate those hard-tofind variables in your programs.

Cross relerences all tokens (key words), variables and constants in sorted

order. You can even add you own tokens from other software such as

ULTRABASIC or VICTREE Listings to screen 01 all ASCII printers.

DISK $17.95

SYNYHY-64

This is renowned as the tines! music synthesizers available at any price.

Others may have a lot of onscreen frills, but SYNTHY 64 makes music belter

than them all. Nothing comes close to the performance of this package

Includes manual with tutorial, sample music

DISK $27.95 TAPE $24.95

ULTRABASIC-64
This package adds 50 powerful commands (many found m VIDEO BASIC,

above) • HIRES. MULTI. DOT. DRAW. CIRCLE. BOX. FILL. JOY. TURTLE.

MOVE. TURN. HARD. SOUND. SPRITE. ROTATE, more All commands

are easy to use. Includes manual with two-part tutorial and demo

DISK $27.95 TAPE $24.95

CHARYPAK-64

This finest charting package chaws p>e. bar and line charts and graphs from

your data or DIF. Multiplan and Busicalc dies Charts are drawn in any of

2 formats Change format and build another cnart immediately. Hardcopy

to MPS801. Epson. Okidata. Prownler Includes manual and tutorial

DISK $42.95

CHARTPLOT-64

Same as CHARTPACK 64 lor highest quality output to most popular pen

plotters

DEALER INQUIRIES ARE INVITED

CADPAK-64
This advanced design package has outstanding features • two Hires

screens; draw LINEs. RAYs. CIRCLES. BOXEs; freehand DRAW; FILL With

patterns; COPY areas; SAVE/RECALL pictures; define and use intricate

OBJECTS; insert text on screen; UNDO last function. Requires high quality

lightpen. We recommend McPen. Includes manual with tutorial.

DISK $49.95 McPen lightpen $49.95

MASTER 64
This professional application development package adds 100 powerful

commands to BASIC including fast ISAM indexed files; simplified yet

sophisticated screen and printer management; programmer's aid; BASIC

4.0 commands; 22-digit arithmetic; machine language monitor. Runtime

package for royalty-free distribution of your programs. Includes 150pp.

manual.

DISK $84.95

VIDEO BASIC-64
This superb graphics and sound development package lets you write soft

ware for distribution without royalties. Has hires, multicolor, sprite and

turtle graphics; audio commands for simple or complex music and sound

effects, two sizes of hardcopy to most dot matrix printers; game features

such as sprite collision detection, lightpen, game paddle; memory

management for multiple graphics screens, screen copy, etc.

DISK $59.95

TAS-64 FOR SERIOUS INVESTORS
This sophisticated charting system plots more than 15 technical indicators

on split screen, moving averages; oscillators; trading brands; least squares;

trend lines, superimpose graphs; five volume indicators; relative strength;

volumes, more Online data collection DJNR/S or Warner. 175pp. manual.

Tutorial. DISK $84.95

FREE CATALOG Ask for a listing of other
Abacus Software forCommodore-64orVlc-20
DISTRIBUTORS

Graat Britain' Btloulm- Franer Nm Ztaland:
AOAMSOFT SSlEfeM SmAPFUCMON ^UNT ELKTRONICS
18 Norwich Ave. AVGufl«ume30 147 Avenue PauMJoumer S^J^^
Rochd*. Lanes Brussel 1160. Bemuim Rueffl Malmaison. France
706-524304 2-660-1447 1732-9254

Wtst Qtrmany: Swidtn: Australia:
WTA BECKER TIAL TRADING CW ELECTRONICS
Merowbgerstr 30 P0 516 416 Loom Road
WDjSHjdDff 34300 AlmhuB BrSS
0211/312085 476-12304 07-397-0808

Commodore 64 is a reg. T.M. of Commodore Business Machines

ft?*?*"
63-66-698

AVAILABLE AT COMPUTER STORES, OR WRITE:

Abacus ill Software
P.O. BOX 7211 GRAND RAPIDS. MICH. 49510
For postage & handling, add $4.00 (U.S. and Canada), add $6.00
for foreign. Make payment In U.S. dollars by check, money order
or charge card. (Michigan Residents add 4% sales tax).

FOR QUICK SERVICE PHONE 616-241-5510

• • • r

HACKERS ONLY!
£-64

The ultimate source
for Commoddre-64
Computer information

OTHER BOOKS AVAILABLE SOOI

THE ANATOMY OF THE C-64

is the insider's guide to the lesser known features of

the Commodore 64 Includes chapters on graphics,

sound synthesis, input/output control, sample programs

using the kernal routines more For those who need to

know, it includes the complete disassembled and

documented ROM listings

ISBN-0-916439-00-3 300DD $19.95

THE ANATOMY OF THE 1541
DISK DRIVE

unravels the mysteries of using the misunderstood disk

drive Oeiads the use of program sequential, relative

and direct access files Include many sample programs

FILE PROTECT DIRECTORY DISK MONITOR. BACKUP.

MERGE. COPY, others Describes internals of DOS with

completely disaddembled and commented listings ol the

1541 ROMS

ISBN-0-916439-01-1 320pp $19.95

MACHINE LANGUAGE FOR C-64

is aimed at those who want to progress beyond BASIC

Write laster. more memory efiicient programs in machine

language Test is specifically geared to Commodore 64

Learns all 6510 instructions Includes listings for 3 full

length programs ASSEMBLER. DISASSEMBLER and

amazing 6510 SIMULATOR so you can see the opera

tion of the 64

ISBN-0-916439-02-X 200pp $14.95

TRICKS & TIPS FOR THE C-64

is a collection of easy to-use programming techniques lor

the 64 A perfect companion for those who have run

up against those hard to solve programming problems

Covers advanced graphics, easy data input. BASIC

enhancements. CP/M cartridge on the '64. POKEs. usei

defined character sets loyslick/mouse simulation, trans

ferring data between comuters. more A treasure chest

ISBN-0-916439-03-8 25Opp $19.95

GRAPHICS BOOK FOR

THE C-64

takes you from the fundamentals of graphic to

advanced topics such as computer aided design Shows

you how to program new character sets, move sprites,

draw in HIRES and MULTICOLOR, use a lightpen.

handle IRQs. do 3D graphics, projections, curves and

animation Includes dozens of samples

ISBN-0-916439-05-4 280pp $19.95

ADVANCED MACHINE

LANGUAGE FOR THE C-64

qives you an intensive treatment of the powerful 64

leatures Author Lothar Englisch delves into areas such

as interrupts, the video controller, the timer, the real

time clock parallel and serial I/O extending BASIC and

tips and tricks from machine language, more

ISBN-0 916439-06-2 200pp $14.95

IDEAS FOR USE ON YOUR C-64

is for those who wonder what you can do with your '64

It is written lor the novice and presents dozens of

program listing the many, many uses for your

computer Themes include auto expenses, electronic

calculator, recipe file, stock lists, construction cost

estimator personal health record diet planner, store

window advertising, computer poetry, parly invitations

and more

ISBN-0-916439-07-0 200pp $12.95

PRINTER BOOK FOR THE C-64

finally simplifies your understanding of the 1525.

MPS/801 1520. 1526 and Epson compatible printers

Packed with examples and utility programs, you'll learn

how to make hardcopy of text and graphics, use secon

dary addresses, plot m 3-D. and much more Includes

commented listing of MPS 801 ROMs

ISBN-0-916439-08-9 350pp. $19.95

SCIENCE/ENGINEERING
ON THE C-64
is an introduction to the world of computers in science

Describes variable types, computational accuracy,

various sort alognthms Topics include linear and

nonlinear regression. CHI-square distribution. Fourier

analysis, matrix calculations, more Programs Irom

chemistry, physics, biology, astronomy and electronics

Includes many program listings

ISBN-0-916439-09-7 250pp $19.95

CASSETTE BOOK FOR THE C-64

(or Vic 20) contains all the information you need to

know about using and programming the Commodore

Datasette Includes many example programs Also con-

tains a new operating system for last loading, saving

and finding of files

ISBN-0-916439-04-6 180pp. S 12.95

DEALER INQUIRIES ARE INVITED

IN CANADA CONTACT:

The Book Centre. 1140 Beaulac Street

Montreal, Quebec H4R1R8 Phone: (514) 322-4154

AVAILABLE AT COMPUTER STORES, OR WRITE:

Abacus 11 Software
P.O. BOX 7211 GRAND RAPIDS. Ml 49510

Exclusive U.S. DATA BECKER PubHslwm

For postage & handling, add $4.00 (U.S. and ■
Canada), add S6.00 for foreign. Make payment ,

in U.S. dollars by check, money order <

charge card. (Michigan Residents add 4% \t
sales tax.) |i

FOR QUICK SERVICE PHONE (616) 241-5510

Commodore 64 i* a r»g. T.M. ol Commodort ButinMt Mtchirwt

	Binder1.pdf
	2009_01_01_00_20_19_Page_1.jpg
	2009_01_01_00_20_19_Page_2.jpg

